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HISTORICAL  INTRODUCTION 

Lord  Kelvin  writing  in  1893,  in  his  preface  to  the 

English  edition  of  Hert/'s  Researches  on  Electric  Waves, 

says  "  many  workers  and  many  thinkers  have  helped  to 
build  up  the  nineteenth  century  school  of  plenum,  one 

ether  for  light,  heat,  electricity,  magnetism  ;  and  the 

German  and  English  volumes  containing  Hertz's  electrical 
papers,  given  to  the  world  in  the  last  decade  of  the 

century,  will  be  a  permanent  monument  of  the  splendid 

cons  jmmation  now  realised.'' 

Ten  years  later,  in  1905,  we  find  Einstein  declaring 

that  "the  ether  will  be  proved  to  be  superflous."  At 
first  sight  the  revolution  in  scientific  thought  brought 

about  in  the  course  of  a  single  decade  appears  to  be  almost 

too  violent.  A  more  careful  even  though  a  rapid  review 

of  the  subject  will,  however,  show  how  the  Theory  of 

Relativity  gradually  became  a  historical  necessity. 

Towards  the  beginning  of  the  nineteenth  century, 

the  luminiferous  ether  came  into  prominence  as  a  result  of 

the  brilliant  successes  of  the  wave  theory  in  the  hands 

of  Young  and  Fresnel.  In  its  stationary  aspect  the 
elastic  solid  ether  was  the  outcome  of  the  search  for  a 

medium  in  which  the  light  waves  may  "undulate."  This 
stationary  ether,  as  shown  by  Young,  also  afforded  a 

satisfactory  explanation  of  astronomical  aberration.  But 

its  ver\  success;  g:ivc  rise  to  a  host  of  new  questions  all 
bearing  on  the  central  problem  of  relative  motion  of  ether 

and  matter. 
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Aragd'n  prism  experiment. — The  refractive  index  of  a 
glass  prism  depends  on  the  incident  velocity  of  light 

outside  the  prism  and  its  velocity  inside  the  prism  after 

refraction.  On  Fresnel's  fixed  ether  hypothesis,  the 
incident  light  waves  are  situated  in  the  stationary  ether 

outside  the  prism  and  move  with  velocity  c  with  respect 

to  the  ether.  If  the  prism  moves  with  a  velocity  u 

with  respect  to  this  fixed  ether,  then  the  incident  velocity 

of  light  with  respect  to  the  prism  should  be  C  +  H.  Thus 

the  refractive  index  of  the  glass  prism  should  depend  on  «, 

the  absolute  velocity  of  the  prism,  i.e.,  its  velocity  with 

respect  to  the  fixed  ether.  Arago  performed  the  experiment 

in  1819,  but  failed  to  detect  the  expected  change. 

Airy-  Boacovitc/i  water -telescope  experiment. — Boscovitch 

had  still  earlier  in  i7b't>,  raised  the  very  important 
question  of  the  dependence  of  aberration  on  the  refractive 

index  of  the  medium  filling  the  telescope.  Aberration 

depends  on  the  difference  in  the  velocity  of  light  outside 

the  telescope  and  its  velocity  inside  the  telescope.  If  the 

latter  velocity  changes  owing  to  a  change  in  the  medium 

filling  the  telescope,  aberration  itself  should  change,  that 

is,  aberration  should  depend  on  the  nature  of  the  medium. 

Airy,  in  1871  filled  up  a  telescope  with  water — but 
failed  to  detect  any  change  in  the  aberration.  Thus  we 

get  both  in  the  case  of  Arago  pri^m  experiment  and 

Airy- Boscovitch  water-telescope  experiment,  the  very 

startling  result  that  optical  effects  in  a  moving  medium 

seem  to  be  quite  independent  of  the  velocity  of  the 

medium  with  respect  to  Fresnel's  stationary  ether. 

Fresnel's  conrection  coefficient  /{•=]  —  '//x2. — Possibly 
some  form  of  compensation  is  taking  place.  \Vorking  on 

this  hypothesis,  Fresnel  Offered  his  famous  ether  convec 

tion  theory.  According  to  Fresnel,  the  presence  of  matter 

implies  a  definite  condensation  of  ether  within  the 
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region  occupied  by  matter.  This  "  condensed  "  or 
e\cr<s  portion  of  ether  is  supposed  to  he  carried  awav 

with  its  own  pice,  of  moving  matter.  It  should  be 

observed  that  only  the  "excess"  portion  is  carried  away, 
while  the  rest  remains  a-  -taunant  ;is  ever.  A  complete 

convection  of  the  "excess  "  ether  p  with  the  full  velocity 
u  is  optically  equivalent  to  a  partial  convection  of  the 

total  ether  p,  with  only  a  fraction  of  the  velocity  £.  u. 
Fresnel  showed  that  if  this  convection  coefficient  k  is 

l  —  l/fj.'2  (p.  being  the  refractive  index  of  the  prism),  then 
the  velocity  of  light  after  refraction  within  the  moving 

prism  would  be  altered  to  just  such  extent  as  would  make 

the  refractive  index  of  the  moving  prism  quite  indepen 

dent  of  its  "absolute"  velocity  u.  The  non-dependence 

of  aberration  on  the  "  absolute  "  velocity  u,  is  also  very 
easily  explained  with  the  help  of  this  Fresnelian  convection- 
coeflicieut  k. 

Stoke**  viscous  ether. — It  should  be  remembered,  however, 

that  Fresnel's  stationary  ether  is  absolutely  fixed  and  is  not 
at  all  disturbed  by  the  motion  of  matter  through  it.  In  this 

respect  Fresnelian  ether  cannot  be  said  to  behave  in  any 

respectable  physical  fashion,  and  this  led  Stokes,  in 

1845-H),  to  construct  a  more  material  type  of  medium. 
Stokes  assumed  that  viscous  motion  ensues  near  the  surface 

of  separation  of  ether  and  moving  matter,  while  at 

sulficifiitlv  distant  unions  the  ether  remains  wholly 
undisturbed.  He  >howed  how  such  a  viscous  ether  would 

explain  aberration  if  all  motion  in  it  were  differentially 

irrotational.  But  in  order  to  explain  the  null  Arago 

efl'cct.  Stoke:-  ua.-  compelled  to  assume  the  convection 
liNpothesis  of  Fresnel  with  an  identical  numerical  value 

for  k,  namely  I  —  './'-.  Thus  the  prestige  of  the  Fresnelian 

convection-cocllicient  \va>  enhanced,  il'  anything,  by  the 

theoretical  inveBti&fctiona  o!'  stokes. 
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Fizratf*  experiment.. — Soon  after,  in  J8ol,  it  received 

direct  experimental  confirmation  in  a  brilliant  piece  of 
work  by  Fizeau. 

If  a  divided  beam  of  light  is  re-united  after  passing 

through  two  adjacent  cylinders  filled  with  water,  ordinary 

interference  fringes  will  be  produced.  If  the  water  in  one 

of  the  cylinders  is  now  made  to  flow,  the  "  condensed " 
ether  within  the  flowing  water  would  be  convected  and 

would  produce  a  shift  in  the  interference  fringes.  The 

shift  actually  observed  agreed  very  well  with  a  value  of 

k=l—  ll^1.  The  Fresnelian  convection-coefficient  now 
became  firmly  established  as  a  consequence  of  a  direct 

positive  effect.  On  the  other  hand,  the  negative  evidences 

in  favour  of  the  convection-coefficient  had  also  multiplied. 

Mascart,  Hoek,  Maxwell  and  others  sought  for  definite 

changes  in  different  optical  effects  induced  by  the  motion 

of  the  earth  relative  to  the  stationary  ether.  But  all  such 

attempts  failed  to  reveal  the  slightest  trace  of  any  optical 

disturbance  due  to  the  "absolute"  velocity  of  the  earth 
thus  proving  conclusively  that  all  tne  different  optical 

effects  shared  in  the  general  compensation  arising  out  of 
the  Fresuelian  convection  of  the  excess  ether.  It  must  be 

earefully  noted  that  the  Fresnelian  convection-coefficient 

implicitly  assumes  the  existence  of  a  fixed  ether  (Fresnel)  or 

at  least  a  wholly  stagnant  medium  at  sufficiently  distant 

regions  (Stokes),  with  reference  to  which  alone  a  convection 

velocity  can  have  any  significance.  Thus  the  convection- 

coefficient  implying  some  type  of  a  stationary  or  viscous, 

yet  nevertheless  "absolute"  ether,  succeeded  in  explaining 
satisfactorily  all  known  optical  facts  down  to  1880. 

Micftelxoti-  M or  ley  Experiment. — In  1881,  Michelson 

and  Morley  performed  their  classical  experiments  which 

undermined  the  whole  structure  of  the  old  ether  theory 

and  thus  served  to  introduce  the  new  theory  of  relativity. 
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The  fundamental  idea  underlying  thift  experiment    is  quite 

simple.  In  all  old  experiments  the  velocity  of  light 

situated  in  free  ether  was  compared  with  the  velocity 

of  waves  actually  situated  in  a  piece  of  moving  matter 

and  presumably  curried  away  by  it.  The  compensatory 
effect  of  the  Fresnelian  convection  of  ether  afforded  a 

satisfactory  explanation  of  all  negative  results. 

In  the  Michelson-Morley  experiment  the  arrangement  is 

quite  different.  If  there  is  a  definite  gap  jn  a  rigid  body, 
light  waves  situated  in  free  ether  will  take  a  definite  time 

in  crossing  the  gap.  If  the  rigid  platform  carrying  the 

gap  is  set  in  motion  with  respect  to  the  ether  in  the  direc 

tion  of  light  propagation,  light  waves  (which  are  even  now 

situated  in  free  ether)  should  presumably  take  a  longer 
time  to  cross  the  gap. 

We  cannot  do  better  than  quote  Eddington's  descrip 
tion  of  this  famous  experiment.  "  The  principle  of  the 
experiment  may  be  illustrated  by  considering  a  swimmer  in 

a  river.  It  is  easily  realized  that  it  takes  longer  to  swim 

to  a  point  50  yards  up-stream  and  back  than  to  a  point  50 

yards  across-stream  and  back.  If  the  earth  is  moving 

through  the  ether  there  is  a  river  of  ether  Howing  through 

the  laboratory,  and  a  wave  of  light  may  be  compared  to  a 

swimmer  travelling  with  constant  velocity  relative  to  the 

current.  If,  then,  we  divide  a  beam  of  light  into  two  parts, 

and  send  one-half  swimming  up  the  stream  for  a  certain 

distance  and  then  (by  a  mirror)  back  to  the  starting 

jx)int,  and  setul  the  other  half  an  equal  distance  across 

stream  and  back,  the  across-stivam  beam  should  arrive 
back  first. 

Let  the  ether  be   llowinir  relative  to 

o  the    apparatus     with    velocity    -n.     in    the 

n'       direct  ion     ()   .     and      let     OA ,     OB,     be 
B  the  two  arms  of  the  apparatus  of  equal 
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length  /,  OA  being  placed  up-stream.  Let  <•  be  the 

velocity  of  light.  The  time  for  the  double  journey  along 
OA  and  back  is 

/   =    --       +       /       =     ̂    =    '2I  B* c — if  r  +  n         rs — ^lz         c 

where  8=  (1  —  n'z /c"  )"*,  a  factor  greater  than  unity. 

For  the  transverse  journey  the  light  must  have  a  compo 

nent  velocity  n  up-stream  (relative  to  the  ether)  in  order  to 

avoid  being  carried  below  OB  :  and  since  its  total  velocity 

is  <•,  its  component  across-stream  must  be  \/(c"—»'2),  the 
time  for  the  double  journey  OB  is  accordingly 

But  when  the  experiment  was  tried,  it  was  found  that 

both  parts  of  the  beam  took  the  same  time,  as  tested  by 

the  interference  bauds  produced." 

After  a  most  careful  series  of  observations;  Michelson 

and  Morley  failed  to  detect  the  slightest  trace  of  any 

effect  due  to  earth's  motion  through  ether. 

The  Michelson-Morley  experiment  seems  to  show  that 

there  is  no  relative  motion  of  ether  and  matter.  Fresnel's 

stagnant  ether  requires  a  relative  velocity  of — 11.  Thus 

Miehelsou  and  Morley  themselves  thought  at  iirst  that  their 

e\]H  rinient  eoniirmed  Stokes'  viscous  ether,  in  which  no 
relative  motion  can  ensue  on  account  of  the  abs.MK'r  of 

slipping  of  ether  :i,t  the  :- -niTrice  of  separation.  Hut  even 

on  Stokes'  theory  this  viscous  How  of  ether  would  fall 
off  at  a  very  rapid  rate  as  we  recede  from  the  surface 

of  separation.  Michelson  and  Morley  repeated  their  experi 

ment  at  different  heights  from  the  surface  of  the  earth,  but 

invariably  obtained  the  sttme  negative  results,  thus  failing 

to  confirm  Stokes'  theory  of  viscous  Mow. 
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o//. —  Further,  in  l.V.'-'i,  Lodge  per 
formed  his  rotating  sphere  experiment  wiiich  should 

complete  absence  of  any  viscous  How  of  ether  due  to 

moving  masses  of  matter.  A  divided  beam  of  light,  after 

repeated  reflections  within  a  very  narrow  gap  between  two 

massive  hemispheres.  \\-;is  allowed  to  re-unite  and  thus 
produce  interference  bands.  When  the  two  hemispheres 

are  set  rotating,  it  is  conceivable  that  the  ether  in  the  gap 

would  be  disturbed  due  to  viscous  How,  and  any  such  flow 

would  be  immediately  detected  by  a  disturbance  of  the 
interference  bands.  But  actual  observation  failed  to 

detect  the  slightest  disturbance  of  the  ether  in  the  gap, 

due  to  the  motion  of  tbe  hemispheres.  Lodge's  experi 
ment  thus  seems  to  show  a  complete  absence  of  any  viscous 
flow  of  ether. 

Apart  from  these  experimental  discrepancies,  grave 

theoretical  objections  were  urged  against  a  viscous  ether. 
Stokes  himself  had  shown  that  his  ether  must  be  incom 

pressible  and  all  motion  in  it  differentially  irrotational, 

at  the  same  time  there  should  be  absolutely  no  slipping  at 

the  surface  of  separation.  Now  all  these  conditions  cannot 

be  simultaneously  satisfied  for  any  conceivable  material 

medium  without  certain  very  special  and  arbitrary  assump 

tions.  Thus  Stokes'  ether  failed  to  satisfy  the  very  motive 
which  had  led  Stokes  to  formulate  it,  namely,  the  desirabi 

lity  of  constructing  a  "  physical"  medium.  Planck  offered 

modified  forms  of  >tokes'  theory  which  seemed  capable  of 
being  reconciled  with  the  Micheleon-Morley  experiment, 

but  required  very  special  assumpt ions.  The  very  complexitv 

and  the  very  arbitrariness  of  these  assumptions  prevented 

Planck's  ether  from  attaining  any  degree  of  practical 
importance  in  the  further  development  of  the  subject. 

The  sole  criterion  of  the  value  of  any  scientific  theory 

must  ultimately  be  its  capacity  for  offering  a  simple, 
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unified,  coherent  and  fruitful  description  of  observed  facts. 

In  proportion  as  a  theory  becomes  complex  it  loses  in 

usefulness — a  theory  which  is  obliged  to  requisition  a 
whole  array  of  arbitrary  assumptions  in  order  to  explain 

special  facts  is  practically  worse  than  useless,  as  it  serves 

to  disjoin,  rather  than  to  unite,  the  several  groups  of  facts. 

The  optical  experiments  of  the  last  quarter  of  the  nine 

teenth  century  showed  the  impossibility  of  constructing  a 

simple  ether  theory,  which  would  be  simenable  to  analytic 
treatment  and  would  at  the  same  time  stimulate  further 

progress.  It  should  be  observed  that,  it  could  scarcely  be 

shown  that  no  logically  consistent  ether  theory  was 

possible;  indeed  in  1910,  H- A.  Wilson  offered  a  consis- 
sent  ether  theory  which  was  at  least  quite  neutral  with 

respect  to  all  available  optical  data.  But  Wilson's  ether 
is  almost  wholly  negative, — its  only  virtue  being  that  it 

does  not  directly  contradict  observed  facts.  Neither  any 

direct  confirmation  nor  a  direct  refutation  is  possible  and 

it  does  not  throw  any  light  on  the  various  optical  pheno 

mena.  A  theory  like  this  being  practically  useless  stands 
self-condemned- 

We  must  now  consider  the  problem  of  relative  motion  of 

ether  and  matter  from  the  point  of  view  of  electrical  theory. 

From  1860  the  identity  of  light  as  an  electromagnetic' 
vector  became  gradually  established  as  a  result  of  the 

brilliant  "displacement  current"  hypothesis  of  Clerk 
Maxwell  and  his  further  -analytical  investigations.  The 

elastic  solid  ether  became  gradually  transformed  into  the 

electromagnetic  one.  Maxwell  succeeded  in  giving  a  fairly 

satisfactory  account  of  all  ordinary  optical  phenomena 

;vnd  little  room  was  left  for  any  serious  doubts  as  regards 

the  general  validity  of  Maxwell's  theory.  Hertz's  re 
searches  on  >lectric  waves,  first  carried  out  in  l^Mi, 

succeeded  in  furnishing  a  Mrong  experimental  confirmation 
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of  Maxwell's  thenn.      Klef-tric    waves    behaved 
like  light   waves  of  ven    lar^e  wave  length. 

Tlie  orthodox  Maxwellian  view  located  the  dielectric 

polarisation  in  fte  electromagnetic  el  her  which  was  merely 

a  transformation  of  iVe-ncl's  stagnant  ether.  The  Mag 
netic  polarisation  was  looked  upon  as  wholly  Secondary  m 
origin,  being  due  to  the  relative  motion  of  the  dielectric 

tul.i-  of  polarisation.  On  this  view  the  Fresnelian  con- 

vcetion  r-octllcient  comes  out  to  he  i,  as  shown  by  J.  J. 

Thomson  in  1880,  instead  of  I  —  1//*-  as  required  by 
optical  experiments.  This  obviously  implies  a  complete 

failure  to  account  for  all  those  optical  experiments  which 

depend  for  their  satisfactory  explanation  on  the  assumption 

of  a  value  for  the  eonvect.ion  coefficient  equal  to  1  —  l  //*2. 

The  modifications  proposed  independently  by  Her!/  and 

Heaviside  fare  no  better.*  They  postulated  the  actual 
medium  to  be  the  seat  of  all  electric  polarisation  and  further 

emphasised  the  reciprocal  relation  subsisting  between 

electricity  and  magnetism,  thus  making  the  field  equations 
more  symmetrical.  On  this  view  the  whole  of  the 

polarised  ether  is  carried  away  by  the  moving  medium, 

and  consequentty,  the  convection  co-efficient  naturally 
becomes  unity  in  this  theory,  a  value  quite  as  discrepant 

as  that  obtained  on  the  original  Maxwellian  assumption. 

Thus  neither  Maxwell's  original  theory  nor  its  subse 
quent  modifications  as  developed  by  llertx.  and  Heaviside 

succeeded  in  obtaining  a  \alne  for  Fresnelian  co-efficient 

equal  to  1  —  1  1^-  ,  and  consequently  stood  totally  condemned 
from  the  optical  point  of  view. 

Certain  direct  electromagnetic  experiments  involving- 
relative  motion  of  polarised  dielectrics  were  no  less  conclu 

sive  against  the  generalised  theory  of  Hertx  and  Heaviside. 

*  See  Note  1. 
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According  to  Hertz  a  moving  dielectric  would  carry  away 

the  whole  of  its  electric  displacement  with  it.  Hence  the 

electromagnetic  effect  near  the  moving  dielectric  would 

be  proportional  to  the  total  electric  displacement,  that  is 

to  K,  the  specific  inductive  capacity  of  the  dielectric.  In. 

1901,  Blondlot  working  with  a  stream  of  moving  gas 

could  not  detect  any  such  effect.  H.  A.  Wilson  repeated 

the  experiment  in  an  improved  form  in  1903  and  working 

with  ebonite  found  that  the  observed  effect  was  pro 

portional  to  K  —  1  instead  of  to  K.  For  gases  K  is  nearly 
equal  to  1  and  hence  practically  no  effect  will  be  observed 

in  their  case.  This  gives  a  satisfactory  explanation  of 

Blondlot's  negative  results. 

Rowland  had  shown  in  L876  that  the  magnetic  force 

due  to  a  rotating  condenser  (the  dielectric  remaining 

stationary)  was  proportional  to  K,  the  sp.  ind.  cap.  On 

the  other  hand,  Rontgen  found  in  1888  the  magnetic 

effect  due  to  a  rotating  dielectric  (the  condenser  remain 

ing  stationary)  to  be  proportional  to  K—  1,  and  not  to 
K.  Finally  Eichenwald  in  1903  found  that  when  both 

condenser  and  dielectric  are  rotated  together,  the  effect 

observed  was  quite  independent  of  K,  a  result  quite 

consistent  with  the  two  previous  experiments.  The  Row 

land  effect  proportional  to  K,  together  with  the  opposite 

Rontgen  effect  proportional  to  1  —  K,  makes  the  Eichenwald 
effect  independent  of  K. 

All  these  experiments  together  with  those  of  Blondlot 

and  Wilson  made  it  clear  that  the  electromagnetic 

effect  due  to  a  moving  dielectric  was  proportional  to 

K— 1,  and  not  to  K  as  required  by  Hertz's  theory.  Thus 
the  above  group  of  experiments  with  moving  dielectrics 

directly  contradicted  the  Hertz- Heaviside  theory.  The 

internal  discrepancies  inherent  in  the  classic  ether  theory 

had  now  become  too  prominent.  It  wao  clear  that  the 
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H  her  row-opt  had  finally  outgrown  its  usefulness.  The 

observed  !';,<•(>  had  become  too  contradictory  and  too 
heterogeneous  to  be  reduced  to  an  organised  whole  with 

tin-  help  of  the  ether  concept  alone.  Radical  departures 
from  the  classical  theory  had  become  absolutely  necessary. 

There  were  several  outstanding  difficulties  in  connec 

tion  with  anomalous  dispersion,  selective  reflection  and 

selective  absorption  which  could  not  be  satisfactory 

explained  in  the  classic  electromagnetic  theory.  It 

was  evident  that  the  assumption  of  some  kind  of 

discreteness  in  the  optical  meduim  had  become  inevit 

able.  Such  an  assumption  naturally  gave  rise  to  an 

atomic  theory  of  electricity,  namely,  the  modern  electron 

theory.  Lorentz  had  postulated  the  existence  of  electrons 

so  early  as  1878,  but  it  was  not  until  some  years  later  that 

the  electron  theory  became  firmly  established  on  a  satisfac 

tory  basis. 

Lorentz  assumed  that  a  moving  dielectric  merely  carried 

away  its  own  "  polarisation  doublets,"  which  on  his  theory 
gave  rise  to  the  induced  field  proportional  to  K  — 1.  The 
field  near  a  moving  dielectric  is  naturally  proportional  to 

K  — 1  and  not  to  K.  Lorentz's  theory  thus  gave  a 
satisfactory  explanation  of  all  those  experiments  with 

moving  dielectrics  which  required  effects  proportional  to 

K—  1.  Lorentz  further  succeeded  in  obtaining  a  value  for 

the  Fresnelian  convection  coefficient  equal  to  1  —  *//**,  the 
exact  value  required  by  all  optical  experiments  of  the 

moving  type. 

\VC  must  now  go  back  to  Michelson  and  Morley's 
experiment.  We  have  seen  that  both  parts  of  the  beam 
are  situated  in  free  ether  ;  no  material  raeduim  is  involved 

in  any  portion  of  the  paths  actually  traversed  by  the  beam. 

Consequently  no  compensation  due  to  Fresnelian  convection 
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of  ether  by  moving  medium  is  poi-sible.  Thus  Kre-nelian 

convection  compensation  can  have  no  possible  application 

in  this  case.  Yet  some  marvellous  compensation  has 

evidvuily  taken  place  which  has  completely  m;i<ke.d  the 

"  absolute  "  velocity  of  the  earth. 

In  Michelson  and  Morley's  experiment,  the  distance 
travelled  by  the  beam  along  OA  (that  is,  in  a  direction 

parallel  to  the  motion  of  the  platform)  is  £//82,  while  the 

distance  travelled  by  the  beam  along1  OB,  perpendicular  to 
the  direction  of  motion  of  the  platform,  is  %l(3.  Yet  the 

most  careful  experiments  showed,  as  Eddington  says,  "  that 
both  parts  of  the  beam  took  the  same  time  as  tested  by  the 

interference  bands  produced.  It  would  seem  that  OA  and 

OB  could  not  really  have  been  of  the  same  length  ;  and  if 

OB  was  of  length  /,  OA  must  have  been  of  length  1 1  ft.  The 

apparatus  was  now  rotated  through  90°,  so  that  OB  became 
the  up-stream.  The  time  for  the  two  journeys  was  again 
the  same,  so  that  OB  must  now  be  the  shorter  length.  The 

plain  meaning  of  the  experiment  is  that  both  arms  have  a 

length  I  when  placed  along  Oi/  (perpendicular  to  the  direc 

tion  of  motion),  and  automatically  contract  to  a  length 

1/J3,  when  placed  along  O/  (parallel  to  the  direction  of 

motion).  This  explanation  was  first  given  by  Fitz-Gerald." 

This  Fitz-Gerald  contraction,  startling  enough  in 
itself,  does  not  suffice.  Assuming  this  contraction  to  he  a 

real  one,  the  distance  travelled  with  respect  to  the  ether  is 

"11(3  and  the  time  taken  for  this  journey  is  :V/^  r.  But  the 
distance  travelled  with  respect  to  the  platform  is  always 

2/.  Hence  the  velocity  of  light  with  respect  to  the  plat- 
'2,1 8 

form  
is    2//  — "  —fi/P,  

a  variable  
quantity  

depending    
on 

the  "  absolute  "  velocity  of  the  platform.  But  no  trace 
of  such  an  effect  has  ever  been  found.  The  velocity  of 

light  is  always  found  to  be  quite  independent  of  the  velocity 
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1^1' ilic  plat  I'm  in.     The  <  precent  dfffioolty 'cannot    \>u    solved 
h\  .my  further  alteration  in  the  measure  of  space.  The 

recount  left  open  i-:  to  alter  the  measure  ol'  time  an 
well,  that  K,  to  adopt  t  lie  conecpt  of  '*  loea  I  t  line."  If  a  mov 

ing  clock  goes  slower  so  that  one  'real'  second  becomes  1  ft 
second  as  measured  in  the  moving  system,  I  lie  velocity  of 

light  relative  to  the  platform  will  always  remain  c.  We 

must  ad.-pt  two  very  startling  hypotheses,  namely,  the 

Fit/  (lerald  contraction  and  the  concept  of  "local  time," 
in  order  to  give  a  satisfactory  explanation  of  the 

Miehelson-Morley  experiment. 

These  results  were  already  reached  by  Lorentz  in  the 

course  of  further  developments  of  his  electron  theory. 

Lorentx  used  a  special  set  of  transformation  equations*  for 
time  which  implicitly  introduced  the  concept  of  local  time. 

But  he  himself  failed  to  attach  any  special  significance  to 

it,  and  looked  upon  it  rather  as  a  mere  mathematical 

artiliee  like  imaginary  quantities  in  analysis  or  the  circle 

at  infinity  in  projective  geometry.  The  originality  of 

Einstein  at  tins  singe  consists  in  his  successful  physical 

interpretation  of  these  result?,  and  viewing  them  as  the 

coherent  organised  consequences  of  a  single  general 

principle.  Lorentz  established  the  Relativity  Theoremt 

(consisting  men-iy  .  )'  a  set  of  transformation  equations) 
while  Kinstein  generalised  it  into  a  Universal  Principle.  In 

addition  Einstein  introduced  fundamentally  new  concepts 

of  space  and  time,  which  served  to  destroy  old  fetishes  and 

demanded  a  wholesale  revision  of  scientific  concepts  and 

thus  opened  up  new  possibilities  in  the  synthetic  unification 

of  natural  processes. 

Newton  had  framed  his  laws  of  motion  in  such  a  \\-.\\ 

as  to  make  then;  quite  Independent  of  the  absolute  velocity 

*  See  \ 

t  See  Note  4. 
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of  the  earth.  Uniform  relative  motion  of  ether  and  matter 

could  not  be  detected  with  the  help  of  dynamical  laws. 

According  to  Einstein  neither  could  it  be  detected  with  the 

help  of  optical  or  electromagnetic  experiments.  Thus  the 

Einsteinian  Principle  of  Relativity  asserts  that  all  physical 

laws  are  independent  of  the  'absolute'  velocity  of  an  observer. 

For  different  systems,  the  form  of  all  physical  laws  is 

conserved.  If  we  chose  the  velocity  of  light*  to  be  the 
fundamental  unit  of  measurement  for  all  observers  (that  is, 

assume  the  constancy  of  the  velocity  of  light  in  all  systems) 

we  can  establish  a  metric  "  one — one "  correspondence 
between  any  two  observed  systems,  such  correspondence 

depending  only  the  relative  velocity  of  the  two  systems. 

Einstein's  Relativity  is  thus  merely  the  consistent  logical 
application  of  the  well  known  physical  principle  thai  \ve 

can  know  nothing  but  relative  motion.  In  this  sense  it  is 

a  further  extension  of  Newtonian  Relativity. 

On  this  interpretation,  the  Lorentz- Fitzgerald  contrac 

tion  and  "local  time"  lose  their  arbitrary  character.  Space 
and  time  as  measured  by  two  different,  observers  are  natur 

ally  diverse,  and  the  difference  depends  only  on  their  relative 

motion.  Both  are  equally  valid;  they  are  merely  different 

descriptions  of  the  same  physical  reality.  This  is  essentially 

the  point  of  view  adopted  by  Minkowski.  He  considers  time 

itself  to  be  one  of  the  co-ordinate  axes,  and  in  his  four- 

dimensional  world,  that  is  in  the  space-time  reality,  relative 
motion  is  reduced  to  a  rotation  of  the  axes  of  reference. 

Thus,  the  diversity  in  the  measurement  of  lengths  and 

temporal  rates  is  merely  due  to  the  static  difference  in  the 

"  frame-work  "  of  the  different  observers. 

The  above    theory  of    Relativity    absorbed    praeticalh 

the    whole  of   the   electromagnetic    theory   based    on    the 

*  See  Notes  9  and  12. 
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M;i\\\ell-|,orenU  system  of  field  equations.  It  combined 

all  the  advantages  (>|  classic  Maxvvelliaa  theory  together 

with  an  electronic  hypothesis.  The  Lorentx  assumption  of 

polarisation  doublets  had  furnished  a  satisfactory  explana 

tion  ..f  flu-  r're^nelian  convection  of  ether,  but  in  the  new 
theory  1  his  is  deduced  merely  as  a  consequence  of  the  altered 

concept  of  relative  velocity.  In  addition,  the  theory  of 

Relativity  accepted  the  results  of  Michelson  and  Morley's 
experiments  as  a  definite  principle,  namely,  the  principle  of 

the  constancy  of  the  velocity  of  light,  so  that  there  was 

nothing  left  for  explanation  in  the  Michelson-Morley 
experiment.  But  even  more  than  all  this,  it  established  a 

single  general  principle  which  served  to  connect  together 

in  a  simple  coherent  and  fruitful  manner  the  known  facts 

of  Physics. 

The  theory  of  Relativity  received  direct  experimental 

coiifii -illation  in  several  directions.  Repeated  attempts  were 
made  to  detect  the  Lorentz-Fitzgerald  contraction.  Any 

ordinary  physical  contraction  will  usual Iv  have  observable 

physical  results  ;  for  example,  the  total  electrical  resistance 

of  a  conductor  will  diminish.  Trouton  and  Noble,  Trouton 

and  Rankine,  Rayleigh  and  Brace,  and  others  employed 

a  variety  of  different  methods  to  detect  the  Lorentz- 

Fitzgerald  contraction,  but  invariably  with  the  same 

negative  results.  Whether  there  ix  an,  ether  or  not, 

uniform  rrforily  //•////  r,'x]><>ct  to  if  can  never  be  detected. 
This  does  not  prove  that  there  is  no  such  thing  as  an 

ether  but  certainly  does  render  the  ether  entirely  super 

fluous.  Universal  compensation  is  due  to  a  change  in  local 

units  of  length  and  time,  or  rather,  IxMtig  merely  different 

descriptions  of  the  same  reality,  there  is  no  compensation 
at  all. 

There  was  another  group  of  observed  phenomena  which 

could  scarcely  be  fitted  into  a  Newtonian  scheme  of 
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dynamic^  without  doing  violence  to  it.  The  experimental 

work  of  Kaufmann,  in  1901,  made  it  abundantly  clear  that 

the  "  mass  v  of  an  electron  depended  on  its  velocity.  "••<> 
early  as  1881,  J.  J.  Thomson  had  shown  that  tlie  inert  in  of 

a  charged  particle  increased  with  its  velocity.  Abraham 
now  deduced  a  formula  for  the  variation  of  mass  with 

velocity,  on  the  hypothesis  that  an  electron  always  remain 

ed  a  riyid  sphere.  Lorentz  proceeded  on  the  assumption 

that  the  electron  shared  in  the  Lorentz- Fitzgerald  contrac 

tion  and  obtained  a  totally  different  formula.  A  very 

careful  series  of  measurements  carried  out  independently  b\ 

Biicherer,  Wolz,  Htipka  and  finally  Neumann  in  1913, 

decided  conclusively  in  favour  of  the  Lorentz  formula. 

This  "contractile"  formula  follows  immediately  as  a  direct 
consequence  of  the  new  Theory  of  Relativity,  without  any 

assumption  as  regards  theVlectrical  origin  of  inertia.  Thus 

the  complete  agreement  of  experimental  facts  with  the 

predictions  of  the  new  theory  must  be  considered  as 

confirming  it  as  a  principle  which  goes  even  beyond  the 

electron  itself.  The  greatest  triumph  of  this  new  theory 

consists,  indeed,  in  the  fact  that  a  large  number  of  results, 

winch  had  formerly  required  all  kinds  of  special  hypotheses 

for  their  explanation,  are  now  deduced  very  simply  as 

inevitable  consequences  of  one  single  general  principle. 

We  have  now  traced  the  history  of  the  development  of 

the  restricted  or  special  theory  of  Relativity,  which  is 

mainly  concerned  with  optical  and  electrical  phenomena. 

It  was  first  offered  by  Kiustein  in  1905.  Ten  years  later, 
Einstein  formulated  his  second  theorv,  the  ( Jcncralised 

Principle  of  Relativity.  This  new  theory  is  mainly  a  theory 

of  gravitation  and  has  very  little  connection  with  optics 

and  electricity.  In  one  sense,  the  second  theory  is  indeed 

a  further  generalisation  of  the  restricted  principle,  but  the 

former  does  not  really  contain  the  latter  as  a  special  case. 
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iii's  li'-v.t  theon  is  re-tricted  in  tlu-  EWDBC  that  it 
only  refers  to  uniform  rect  iliniar  motion  and  has  no  appli 

cation  to  any  kind  of  accelerated  movements.  Einstein  in 

hi-  second  theory  extends  the  Relativity  Principle  to  cases 

ol'  accelerated  motion.  If  Relativity  is  to  be  universallv 
true,  ti.en  e\vn  accelerated  motion  must  be  merely  rt'lativf 
nint  in,  i  ln'l  n'ct'ii  mutter  and  HI  after.  Hence  the  Generalised 

Principle  of  Relativity  asserts  that  "absolute"  motion 
cannot  be  detected  even  with  the  help  of  gravitational  IRWH. 

All  in  'vements  must  be  referred  to  definite  sets  of 

co-ordinate  axes.  If  there  is  any  chaiiLjf  of  axes,  the 

numerical  magnitude  of  the  movements  will  also  change. 

Bui  according  to  Newtonian  dynamics,  such  alteration  in 

physical  movements  can  only  be  due  to  the  effect  of  ceitain 

1'orces  in  the  field.*  Thus  any  change  of  axes  will  introduce 

new  '•geometrical"  forces  in  the  field  which  are  quite 
independent  of  the  nature  of  the  body  acted  on.  Gravitation 

al  forces  also  have  this  same  remarkable  property,  and 

gravitation  itself  may  be  of  essentially  the  same  nature  as 

the.-e  "'geometrical"  forces  introduced  by  a  change  of  axes. 

'This  loids  to  Einstein's  famous  Principle  of  Equivalence. 

A  i/i'<ifl/nl  innal  Jield  of  force  in  xtrictly  equivalent  to  one 
introduced  /»/  </  tfantforatation  <>f  co-ordtunfey  and  nopQwiltfo 

t'.r/if.'i'/';  fiif  ft  it  ilixtiiKinixh  between  the  two. 

Thus  it  mav  hecome  possible  to  "transform  away'" 

gravitational  elTect-^.  at  least  For  sufficiently  small  region^  ol' 
space,  bv  referring  all  movements  to  a  new  set  of  axes.  This 

new  •'framework"  may  of  course  have  all  kinds  of  very 
complicated  movements  when  referred  to  the  old  Galilean 

or  "rectangular  unarceleraled  syslem  of  co-ordinate-." 
But  there  is  no  reason  why  we  should  look  upt.n  the 

Galilean  s\>tein  ,i>  more  I'liiHlainenlal  than  any  other.  If  it 
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is  found  simpler  to  refer  all  motion  in  a  gravitational  field 

to  a  special  set  of  co-ordinates,  we  may  certainly  look  upon 

this  special  "framework"  (at  least  for  the  particular  region 
concerned),  to  be  more  fundamental  and  more  natural.  We 

may,  still  more  simply,  identify  this  particular  framework 

with  the  special  local  properties  of  space  in  that  region. 

That  is,  we  can  look  upon  the  effects  of  a  gravitational 

h'eld  as  simply  due  to  the  local  properties  of  space  and  time 
itself.  The  very  presence  of  matter  implies  a  modification 

of  the  characteristics  of  space  and  time  in  its  neighbour 

hood.  As  Eddington  saj's  "  matter  does  not  cause  the 
curvature  of  space-time.  It  is  the  curvature.  Just  as 

light  does  not  cause  electromagnetic  oscillations;  it  is  the 

oscillations." 

We  may  look  upon  this  from  a  slightly  different  point 

of  view.  The  General  Principle  of  Relativity  asserts  that 
all  motion  is  merely  relative  motion  between  matter  and 

matter,  and  as  all  movements  must  be  referred  to  definite 

sets  of  co-ordinates,  the  ground  of  any  possible  framework 
must  ultimately  be  material  in  character.  It  /*  convenient 

to  take  the  matter  actually  present  in  a  field  as  the 

fundamental  ground  of  our  framework.  If  this  is  done, 

the  special  characteristics  of  our  framework  would  naturally 

depend  on  the  actual  distribution  of  matter  in  the  field. 

But  physical  space  and  time  is  completely  defined  by  the 

"  framework."  In  other  words  the  "  framework  "  itself  ?'•< 
space  and  time.  Hence  we  see  how  //////*/'v//  space  and  time 

is  actually  defined  by  the  local  distribution  of  matter. 

There  are  certain  magnitudes  which  remain  constant  by 

any  change  of  axes.  In  ordinary  geometry  distance 

between  two  points  is  one  such  magnitude  ;  so  that 

&r2  +Sy-  +5?-  is  an  invariant.  In  the  restricted  theory  of 
light,  the  principle  of  constancy  of  light  velocity  demands 

that  Saf*+fy*+Sa*—c*Sl*  should  remain  constant. 
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The  *i'/m?nti'ni  </\  oi'  adjacent  events  is  defined  by 
ftx*  =  -,/./•  2  -////-'  _,/:v+,.-V/-.  It  is  :ui  extrusion  of  tin- 
notion  of  distance  and  this  is  the  ne\v  invariant.  Now  if 

.*•,  //,  :,  I  are  transformed  to  any  set  of  new  variables 

j-,,  .'•,,  .»•..,  ./.,,  we  shall  got  a  quadratic  expression  for 

,/.s-  =  //!  rr,-  +  fy,8.»v.j  +  .••  =  ;></, i,.<v,  where  them's  are 
functions  of  ./•,,./•«,,  .r.p  #4  depending  on  the  transforma 
tion. 

The  special  properties  of  space  and  time  in  any  region 

are  defined  by  these  //'s  which  are  themselves  determined 
by  the  actual  distribution  of  matter  in  the  locality.  Thus 

from  the  Newtonian  point  of  view,  these  #'s  represent  the 
gravitational  effect  of  matter  while  from  the  Relativity 

stand-point,  these  merely  define  the  non-Newtonian  (and 

incidentally  non-Euclidean)  spice  in  the  neighbourhood  of 
matter. 

We  have  seen  that  Einstein's  theory  requires  local 
curvature  of  space-time  in  the  neighbourhood  of  matter. 
Such  altered  characteristics  of  space  and  time  give  a 

satisfactory  explanation  of  an  outstanding  discrepancy  in 

the  observed  advance  of  perihelion  of  Mercury.  The  large 

discordance  is  almost  completely  removed  by  Einstein's 
theory. 

Again,  in  an  intense  gravitational  field,  a  beam  of  light 

will  be  affected  by  the  local  curvature  of  space,  so  that  to 

an  observer  who  is  referring  all  phenomena  to  a  Newtonian 

system,  the  beam  of  light  will  appear  to  deviate  from  its 

path  along  an  Euclidean  straight  line. 

This  famous  prediction  of  Einstein  about  the  deflection 

of  a  beam  of  light  by  the  sun's  gravitational  field  was 
tested  during  the  total  solar  eclipse  of  May,  19 IS*.  The 

observed  deflection  is  decisively  in  favour  of  the  Generalised 

Theory  of  Relativity. 
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It  should  be  noted  however  that  the  velocity  of  light 

itself  would  decrease  in  a  gravitational  field.  This  may 

appear  at  first  sight  to  be  a  violation  of  the  principle  of 

constancy  of  light-velocity.  But  when  we  remember  that 

the  Special  Theory  is  explicitly  restricted  to  the  case  of 

unaccelerated  motion,  the  difficulty  vanishes.  In  the 

absence  of  a  gravitational  field,  that  is  in  any  unaccelerated 

system,  the  velocity  of  light  will  always  remain  constant. 

Thus  the  validity  of  the  Special  Theory  is  completely 

preserved  within  its  own  rextrictwl  field. 

Einstein  has  proposed  a  third  crucial  test.  He  has 

predicted  a  shift  of  spectral  lines  towards  the  red,  due  to  an 

intense  gravitational  potential.  Experimental  difficulties 

are  very  considerable  here,  as  the  shift  of  spectral  lines  is  a 

complex  phenomenon.  Evidence  is  conflicting  and  nothing 

conclusive  can  yet  be  asserted.  Einstein  thought  that  a 

gravitational  displacement  of  the  Praunhofer  lines  is  a 

necessary  and  fundamental  condition  for  the  acceptance  of 

his  theory.  But  Eddington  has  pointed  out  that  even  if 

this  test  fails,  the  logical  conclusion  would  seem  to  be  that 

while  Einstein's  law  of  gravitation  is  true  for  matter  in 
bulk,  it  is  not  true  for  such  small  material  systems  as 
atomic  oscillator. 

CONCLUSION 

From  the  conceptual  stand-point  theiv  are  several 

important  consequences  of  the  Generalised  or  Gravitational 

Theory  of  Relativity.  Physical  space-time  is  perceived  to 
be  intimately  connected  with  the  actual  local  distribution 

of  matter.  Euclid-Newtonian  space-time  is  not  the  actual 

space-time  of  Physics,  simply  because  the  former  completely 

neglects  the  actual  presence  of  matter.  Euclid-Newtonian 

continuum  is  merely  an  abstraction,  while  physical  spnn- 
time  is  the  actual  framework  which  has  some  definite 
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curvature  due  to  the  presence  of  matter  Gravitational 

Thrnrv  of  Relativity  tlius  brings  out  clearly  the  funda 

mental  distinction  between  actual  physical  space-time 

(which  is  non-isotropk"  and  non- Euclid-Newtonian)  on  one 

hand  and  the  abstract  Euclid-Newtonian  continuum  (which 

is  homogeneous,  iaotropio  and  a  purely  intellectual  construc 

tion)  on  the  other. 

The  measurements  of  the  rotation  of  the  earth  reveals  a 

fundamental  framework  which  may  be  called  the  "  inertial 

framework.1'  This  constitutes  the  actual  physical  universe. 
This  universe  approaches  Galilean  space-time  at  a  great 
distance  from  matter. 

The  properties  of  this  physical  universe  may  be  referred 

to  some  world-distribution  of  matter  or  the  "inertial  frame 

work"  may  be  constructed  by  a  suitable  modification  of  the 

law  of  gravitation  itself.  In  Einstein's  theory  the  actual 
curvature  of  the  "  inertial  framework  "  is  referred  to  vast 

quantities  of  undetected  world-matter.  It  has  interesting 
consequences.  The  dimensions  of  Einsteinian  universe 

would  depend  on  the  quantity  of  matter  in  it;  it  would 
vanish  to  a  roint  in  the  total  absence  of  matter.  Then 

again  curvature  depends  on  the  quantity  of  matter,  and 

hence  in  the  presence  of  a  sufficient  quantity  of  matter  space- 

time  may  curve  round  and  close  up.  Eiusteinian  universe 

will  then  reduce  to  a  finite  system  without  boundaries,  like 

the  surface  of  a  sphere.  In  this  "closed  up"  system, 
light  rays  will  come  to  a  focus  after  travelling  round  the 

universe  and  we  should  see  an  <f anti-sun"  (corresponding  to 
the  back  surface  of  the  sun)  at  a  point  in  the  sky  opposite 
to  the  real  sun.  This  anti-sun  would  of  course  be  equally 
large  and  equally  bright  if  there  is  no  absorption  of  light 
in  free  space. 

In  de  Sitter's  theory,  the  existence  of  vast  quantities  of 
world-matter  is  not  required.  But  beyond  a  definite 
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distance  from  an  observer,  time  itself  stands  still,  so  that 

to  the  observer  nothing  can  ever  "  happen  "  there.  All 
these  theories  are  still  highly  speculative  in  character,  but 

they  have  certainly  extended  the  scope  of  theoretical  physics 

to  the  central  problem  of  the  ultimate  nature  of  the 
universe  itself. 

One  outstanding  peculiarity  still  attaches  to  the  concept 

of  electric  force — it  is  not  amenable  to  any  process  of  being 

"transformed  away"  by  a  suitable  change  of  framework. 
H.  Weyl,  it  seems,  has  developed  a  geometrical  theory  (in 

hyper-space)  in  which  no  fundamental  distinction  is  made 
between  gravitational  and  electrical  forces. 

Einstein's  theory  connects  up  the  law  of  gravitation 
with  the  laws  of  motion,  and  serves  to  establish  a  very 

intimate  relationship  between  matter  and  physical  space- 

time.  Space,  time  and  matter  (or  energy)  were  considered 

to  be  the  three  ultimate  elements  in  Physics.  The  restricted 

theory  fused  space-time  into  one  indissoluble  whole.  The 

generalised  theory  has  further  synthesised  space-time  and 
matter  into  one  fundamental  physical  reality.  Space,  time 

and  matter  taken  sej»arately  are  more  abstractions.  Physical 

reality  consist**  of  a  synthesis  of  all  three. 

P.  C.  MAHALAXOBIS. 
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Note  A. 

For  example  consider  a  massive  particle  resting  on  a 

circular  disc.  If  \ve  set  the  disc  rotating,  a  centrifugal  force 

appears  in  the  Held.  On  the  other  hand,  if  we  transform 

to  a  set  of  rotating  axes,  we  must  introduce  a  centrifugal 

force  in  order  to  correct  for  the  change  of  axes.  This 

newly  introduced  centrifugal  force  is  usually  looked  upon 

as  a  mathematical  fiction — as  "geometrical"  rather  than 
physical.  The  presence  of  such  a  geometrical  force  is  usually 

interpreted  us  being  due  to  the  adoption  of  a  fictitious 

framework.  On  the  other  hand  a  gravitational  force  is 

considered  quite  real.  Thus  a  fundamental  distinction  is 

made  between  geometrical  and  gravitational  forces. 

In  the  General  Theory  of  Relativity,  this  fundamental 

distinction  is  done  away  with.  The  very  possibility  of 

distinguishing  between  geometrical  and  gravitational  forces 

is  denied.  All  axes  of  reference  may  now  be  regarded  as 

equally  valid. 

In  the  Restricted  Theory,  all  "unaccelerated"  axes  of 
reference  were  recognised  as  equally  valid,  so  that  physical 

laws  were  made  independent  of  uniform  absolute  velouitv. 

In  the  General  Theory,  physical  laws  are  made  independent 

of  "absolute"  motion  of  any  kind. 





On 
The  Electrodynamics  of  Moving  Bodies 

Bl 

A.     El \STKIN. 

INTRODUCTION. 

It  is  well  known  thai  if  we  attempt  to  apply  Maxwell's 
electrodynamics,  as  conceived  at  the  present  time,  to 

moving  bodies,  we  are  led  to  assymetry  which  does  not 

aijrec  with  observed  phenomena.  Let  u*  think  of  the 
mutual  action  between  n  magnet  and  a  conductor.  The 

observed  phenomena,  in  this  case  depend  only  on  the 

relative  motion  of  the  conductor  and  the  magnet,  while 

according  to  the  usual  conception,  a  distinction  must  be 
made  between  the  cases  where  the  one  or  the  other  of  the 

bodies  is  in  motion.  If,  for  example,  the  magnet  moves 

and  the  conductor  is  at  rest,  then  an  electric  held  of  certain 

energy-value  is  produced  in  the  neighbourhood  of  the 
magnet,  which  excites  a  current  in  those  parts  of  the 

field  where  a  conductor  exists.  'But.  if  the  magnet  be  at 
rest  and  the  conductor  be  set  in  motion,  no  electric  tield 

is  produced  in  the  neighbourhood  of  the  magnet,  but  an 

electromotive  force  which  corresponds  to  no  energy  in 

itself  is  produced  in  the  conductor;  this  causes  an  electric 

current  of  the  same  magnitude  and  the  <:ime  career  as  the 

electric  force,  it  being  of  course  assumed  that  the  iclative 
motion  in  both  of  these  eas.^  is  the 



I'RINCIPLE    OF    RRLATIV1TY 

2.  Examples  of  a  similar  kind  such  as  the  unsuccessful 

attempt  to  substantiate   the  motion  of   the    earth    relative 

to   the  "  Light-medium  "  lead    us  to   the   supposition  that 
not  only  in  mechanics,   but  also   in   electrodynamics,  no 

properties   of  observed    facts    correspond    to   a    concept  of 

absolute  rest;  but  that  for  all  coordinate  systems  for  which 

the  mechanical  equations  hold,  the    equivalent  electrodyna- 
mical  and  optical  equations  hold  also,  as    has    already  been 

shown  for  magnitudes  of  the  first  order.     In  the  following 

we  make  these   assumptions    (which  we  shall  subsequently 

call   the  Principle  of  Relativity)  and    introduce  the  further 

assumption, — an   assumption    which  is  at   the    first   sight 

quite  irreconcilable    with  the    former    one — that    light   is 

propagated    in  vacant    space,  with    a   velocity    '•    which  is 
independent,   of    the    nature    of    motion    of    the   emitting 

body.     These  two  assumptions  are  quite    sufficient    to  gu-e 
us  a  simple    and  consistent    theory   of   electrodynamics    of 

moving  bodies  on   the  basis  of    the  Maxwellian  theory    for 

bodies    at    rest.       The    introduction     of   a    "  Lightather" 
will  be  proved    to    be   superfluous,   for  according    to   the 

conceptions  which  will  be  developed,    we  shall    introduce 

neith  er   a   space   absolutely   at    rest,    and    endowed    with 

special  properties,  nor  shall  we  associate   a    velocity- vector 

with   a    point    in    which    electro-magnetic    processes    take 

place. 

3.  Like  every    other  theory    in    electrodynamics,  the 

theory  is  based  on  the  kinematics  of  rigid  bodies;  in  t he- 
enunciation  of  every  theory,  we  have  to  do  with  relations 

between  rigid  bodies  (co-ordinate  system),  clocks,  and 

electromagnetic  processes.  An  insufficient  consideration 
of  these  circumstances  is  the  cause  of  difficulties  with 

which  the  electrodynamics  of  moving  bodies  have  to  fi^ht 

at  present. 
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I.-KINEMATXOAL   PORTION. 

§  1.    Definition  of  Synchronism. 

l^t  us  hrivc  a  co-ordinate  system,  in  which  the  New 

tonian  equations  hold.  For  distinguishing  this  system 

from  another  which  will  be  introduced  hereafter,  we 

shall  always  call  it  "  the  stationary  system." 

If  a  material  point-be  at  rest  in  this  system,  then  its 

position  in  this  system  nan  be  found  out  by  a  measuring 
rod,  and  can  be  expressed  by  the  methods  of  Euclidean 

Oeometry,  or  in  Cartesian  co-ordiuates. 

If  we  wish  to  describe  the  motion  of  a  material  point, 

the  values  of  its  coordinates  must  be  expressed  as  functions 

of  time.  It  is  always  to  be  borne  in  mind  that  such  a' 
nt/h-ntultcrtt  ilcfniKlnn  has  a  physical  sense t  only  when  ice 

lhi\-i'  it  i.'f.i;i,-  ,><>//>, /i  ///'  n'/i'il.  /.v  tiifttut  l>y  tiMf.  Jt'f  have  to 
dike  into  consideration  l.h<>  fact  that  those  of  our  conceptions,  in 

/>•///<>//  time  /i!<ii/x  a  part,  are  al ̂ nyx  conception*  of  synchronism 

For  example,  we  say  that  a  train  arrives  here  at  7  o'clock ; 
this  moans  that  the  exact  pointing  of  the  little  hand  of  my 

watch  to  7,  and  the  arrival  of  the  train  are  synchronous 
events. 

It  may  appear  that  all  difficulties  connected  with  the 

definition  of  time  can  be  removed  when  in  place  of  time, 

we  substitute  the  position  of  the  little  hand  of  my  watch. 

Such  a  definition  is  in  fact  sufficient,  when  it  is  required  to 

ilelinr  timt-  exclusively  for  the  place  at  which  the  clock  is 
stationed,  hut  the  definition  is  not  sufficient  when  it  is 

required  to  connect  by  time  events  taking  place  at  different 

station*, — or  what  amounts  to  the  same  thing, — to  estimate 
by  means  of  time  (zeitlich  werten)  the  occurrence  of  events, 

take  place  at  stations  distant  from  the  clock. 
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Now  with  regard  to  this  attempt; — the  time-estimation 
of  events,  we  can  satisfy  ourselves  in  the  following 

manner.  Suppose  an  observer — who  is  stationed  at  the 

origin  of  coordinates  with  the  clock — associates  a  ray  of 
light  which  comes  to  him  through  space,  and  gives  testimony 

to  the  event  of  which  the  time  is  to  be  estimated, — with 

the  corresponding  position  of  the  hands  of  the  clock.  But 

such  an  association  has  this  defect, — it  depends  on  the 
position  of  the  observer  provided  with  the  clock,  as  we 

know  by  experience.  AVe  can  attain  to  a  more  practicable 

result  by  the  following  treatment. 

If  an  observer  be  stationed  at  A  with  a  clock,  he  can 

estimate  the  time  of  events  occurring  in  the  immediate 

neighbourhood  of  A,  by  looking  for  the  position  of 

the  hands  of  the  clock,  which  are  syrchrouous  with 
the  event.  If  an  observer  be  stationed  at  B  with  a 

clock, — we  should  add  that  the  clock  is  of  the  same  nature 

as  the  one  at  A, — he  can  estimate  the  time  of  events 

occurring  about  B.  But  without  further  premises,  it  is 

not  possible  to  compare,  as  far  as  time  is  concerned,  the 
events  at  B  with  the  events  at  A.  We  have  hitherto  an 

A-time,  and  a  B-time,  but  no  time  common  to  A  and  B. 

This  last  ,time  (i.e.,  common  time)  can  be  defined,  if  we 

establish  by  definition  that  the  time  which  light  requires 

in  travelling  from  A  to  B  is  equivalent  to  the  time  which 

light  requires  in  travelling  from  B  to  A.  For  example, 

a  ray  of  light  proceeds  from  A  at  A-time  t  towards  B, 

arrives    and  is  reflected  from  B  at  B-time  t        and  returns 

to  A  at  A-time  t'  .      According    to   the  definition,  both A 

clocks  are  synchronous,  it' 
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\\  ••  as-ume  that  tin's  definition  of  synchronism  is  possible 
without  involving  any  inconsistency,  for  any  number  of 

(points,  therefore  the  following  relations  hold  :  — 

1.  If  the  clock  at  B  be  synchronous  with  the  clock 

at  A,  then  the  clock  at  A  is  synchronous  with  the  clock 
at  B. 

:>.  If  the  clock  at  A  as  well  as  the  clock  at  B  are 

both  synchronous  with  the  clock  at  C,  then  the  clocks  at 

A  and  B  an-  synchronous. 

Thus  with  the  help  of  certain  physical  experiences,  we 

have  established  what  we  understand  when  we  speak  of 

clocks  at  rest  at  different  stations,  and  synchronous  with 

one  another  ;  and  thereby  we  have  arrived  at  a  definition  of 

synchronism  and  time. 

In  accordance  with  experience  we  shall  assume  that  the 

magnitude 

2  AB 
,  where  r  is  a  universal  constant. 

\\  "e  have  defined  time  essentially  with  a  clock  at  rest 
in  a  stationary  system.  Ou  account  of  its  adaptability 

to  the  stationary  system,  we  call  the  time  defined  in  this 

way  as,  "  time  of  the  stationary  system." 

$  2.    On  the  Relativity  of  Length  and  Time. 

The  following  reflections  are  based  on  the  Principle 

of  Kelatmt\  and  on  the  Principle  of  Constancy  of  the 

velocity  of  light,  both  of  which  we  define  in  the  following 

way  :  — 

1.  The  laws  according  tu  which  the  uuture  of  physical 

>\>tmis  alter  are  independent  of  the  manner  in  which 

those  flian^s  ;,n.  referred  to  two  co-ordinate  »\stem> 
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which  have  a  uniform  translatory  motion  relative  to  each 
other. 

2.  Every  ray  of  light  moves  in  the  "  stationary 

co-ordinate  system  "  with  the  same  velocity  c,  the  velocity 
being  independent  of  the  condition  whether  this  my  of 

light  is  emitted  by  a  body  at  rest  or  in  motion.*  Therefore 

Path  of  Light 
velocity  ==  =— -•  —  , Interval  or  time 

where,  by    '  interval  of   time,'    we   mean    time  as  defined 
in  §1. 

Let  us  have  a  rigid  rod  at  rest ;  this  has  a  length  /, 

when  measured  by  a  measuring  rod  at  rest ;  we  suppose 

that  the  axis  of  the  rod  is  laid  along  the  X-axis  of  the 

system  at  rest,  and  then  a  uniform  velocity  >•,  parallel 
to  the  axis  of  X,  is  imparted  to  it.  Let  us  now  enquire 

about  the  length  of  the  moving  rod;  this  can  be  obtained 

by  either  of  these  operations. — 

(a)  The  observer  provided  with  the  measuring  rod 
moves  along  with  the  rod  to  be  measured,  and  measures 

by  direct  superposition  the  length  of  the  rod : — just  as  if 
the  observer,  the  measuring  rod,  and  the  rod  to  be  measured 
were  at  rest. 

(6)  The  observer  finds  out,  by  means  of  clocks  placed 

in  a  system  at  rest  (the  clocks  being  synchronous  as  defined 

in  §  1),  the  points  of  this  system  where  the  ends  of  the 

rod  to  be  measured  occm  at  a  particular  time  f.  The 

distance  between  these  two  points,  measured  .by  the 

previously  used  measuring  rod,  this  time  it  being  at  rest, 

is  a  length,  which  wt>  may  call  the  "  length  of  the  rod." 

According  to  the  Principle  of  Relativity,  the  length 

found  out  by  the  operation  «),  which  we  mav  call  "  the 
*  Vide  Note  V. 
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length  of  the  roil  in  the  moving  >ystem  "  is  equal  to  the 
length  I  of  the  rod  in  the  stationary  system. 

The  length  which  is  found  out  by  the  second    method, 

mav  he  callo<l  '  the  ffnyth  of  Ike  m<>i'ir></  roil  mounted  from 

I  he  xf'tlitn/irij  xi/xft-m.'  This  length  i>  to  he  estimated  on 

the  !>;isis  of  our  principle,  and  <"V  &h<i  1.1  find  it  /<>  If  different 

from  (. 

In    the   generally    recognised    kinematics,    we   silently 

assume  that  the    lengths   defined   by  these    two  operations 

jiial,    or   in    other  words,  that   at  an  epoch  of  time  (, 

a  moving  rigid  body    is    geometrically    replaceable   by  the 

s-imc  body,  which  can  replace  it  in  the  condition  of  rest. 

Eelativity  of  Time. 

Let  us  suppose  that  the  two  clocks  synchronous  with 

the  clocks  in  the  system  at  rest  are  brought  to  the  ends  A, 

and^B  of  a  rod,  /.<?.,  the  time  of  the  clocks  correspond  to 

the  time  <>f  the  stationary  system  at  the  points  where  they 

happen  to  arrive ;  these  clocks  are  therefore  synchronous 

iti  the  stationary  system. 

\Ve  further  imagine  that  there  are  two  observers  at  the 

two  watches,  and  moving  with  them,  and  that  these 

observers  apply  the  criterion  for  synchronism  to  the  two 

clui'k-.  At  the  time  t  ,  a  ray  of  light  goes  out  from  A,  is 

rollected  from  B  at  the  time  t  ,  and  arrives  back  at  A  at B 

time  /'  .  Taking  into  consideration  the  principle  of 

constancy  of  the  velocity  oi'  light,  we  have 

,,  AB 
and  t     —t=    . A      B       c+v 
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where  /•  }  is  the  length  of  the  moving  rod,  meu-mv<i 

in  the  stationary  system.  Therefore  the  observers  stationed 

with  the  watches  will  not  find  the  clocks  synchronous, 

though  the  observer  in  the  stationary  system  must  declare 

the  docks  to  be  synchronous,  \Ve  therefore  sei«  that  we  can 

attach  no  absolute  significance  to  the  concept  of  synchro 

nism  ;  but  two  events  which  are  synchronous  when  viewed 

from  one  system,  will  not  be  synchronous  when  viewed 

from  a  system  moving  relatively  to  this  system. 

$  3.    Theory  of  Co-ordinate  and  Time-Transformation 
from  a  stationary  system  to  a  system  which 

moves  relatively  to  this  with 
uniform  velocity. 

Let  there  be  given,  in  the  stationary  system  two 

co-ordinate  systems,  I.e.,  two  series  of  three  mutually 

perpendicular  lines  issuing  from  a  point.  Let  the  X-axes 
of  each  coincide  with  one  another,  and  the  V  and  Z-axes 

be  parallel.  Let  a  rigid  measuring  rod,  and  a  number 

of  clocks  be  given  to  each  of  the  systems,  and  let  the  rods 

and  clocks  in  each  be  exactly  alike  each  other. 

Let  the  initial  point  of  one  of  the  systems  (/?•)  have 
a  constant  velocity  in  the  direction  t)f  the  X-axis  of 

the  other  which  is  stationary  system  K,  the  motion  being 

also  communicated  to  the  rods  and  clocks  in  the  system  (/•). 
Any  time  t  of  the  stationary  system  K  corresponds  to  a 

definite  position  of  the  axes  of  the  moving  system,  which 

are  always  parallel  to  the  axes  of  the  stationary  system.  By 

/,  we  always  mean  the  time  in  the  stationary  system. 

We  suppose  that  the  space  is  measured  by  the  stationary 

measuring  rod  placed  in  the  stationary  system,  as  well  as 

by  the  moving  measuring  rod  placed  in  the  moving 
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system,  and  \ve  thus  obtain  the  co-ordinates  (j',y, z)  for  the 
stationary  s\>tcm,  and  ($,rj,£)  for  the  moving  system.  Let 

the  time  t  be  determined  for  each  point  of  the  stationary 

system  (which  are  provided  with  clocks)  by  means  of  the 

clocks  which  are  placed  in  the  stationary  system,  with 

the  help  of  light-signals  as  described  in  §  1.  Let  also 
the  time  T  of  the  moving  system  be  determined  for  each 

point  of  the  moving  system  (in  which  there  are  clocks  which 

are  at  rest  relative  to  the  moving  system),  by  means  of 

the  method  of  light  signals  between  these  points  (in 

which  there  are  clocks)  in  the  manner  described  in  §  1. 

To  every  value  of  (<•,//,  -,  /)  which  fully  determines 
the  position  and  time  of  an  event  in  the  stationary  system, 

there  correspond-;  a  system  of  values  (£,r/,CT)  ;  now  the 
problem  is  to  find  out  the  system  of  equations  connect 

ing  these  magnitudes. 

Primarily  it  is  clear  that  on  account  of  the  property 

of  homogeneity  which  we  ascribe  to  time  and  space,  the 

equations  must  be  linea1. 

If  we  put  .?•':=  '•  —  rf,  then  -it  is  clear  that  at  a  point 
relatively  at  rest  in  the  system  K,  we  have  a  system  of 

values  (.<•'  y  z]  which  are  independent  of  time.  Now 
let  us  find  out  T  as  a  function  of  (',y,z,(}.  For  this 

purpose  we  have  to  express  in  equations  the  fact  that  T  is 

not  other  than  the  time  given  by  the  clocks  which  are 

at  rest  in  the  system  k  which  must  be  made  synchron 

ous  in  the  manner  described  in  §  I. 

Let  a  ray   of  light  be  sent  at  time    TO  from  the    origin 

of  the  system  k  along  the  X-axis  towards  .c'  and  let    it  be 
reflected  from    that    place  at  time    rl    towards   the    origin 

of  moving  co-ordinates  and  let  it   arrive  there  at  time  T2  •' 
then  we  must  have 

+  T,)=T1 
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If  we  now  introduce  the  condition  that  T  is  a  function 

of  co-orrdinates,  and  apply  the  principle  of  constancy  of 

the  velocity  of  light  in  the  stationary  system,  we  have 

|     JT  (0,  0,  0,   0+T   0,   0,  0,    {t+   ̂ —.+^L-     }  \    1 
(  c—  v     c  +  v  )  /   J 

=T(*',  o,  o,  t  +—    I 
C—  V  ). 

It  is  to  be  noticed  that  instead  of  the  origin  of  co 

ordinates,  we  could  select  some  other  point  as  the  exit 

point  for  rays  of  light,  and  therefore  the  above  equation 

holds  for  all  values  of  {^y,z,t,}, 

A  similar  conception,  being  applied  to  they-  and  r-axis 

gives  us,  when  we  take  into  consideration  the  fact  that 

light  when  viewed  from  the  stationary  system,  is  alnays 

propogated  along  those  axes  with  the  velocity  ̂ /c*  —v*, 
we  have  the  questions 

From  these   equations  it  follows  that  T  is  a  linear  func 

tion  of  .«  and  t.     From  equations  (1)  we  obtain 

where  a  is  an  unknown  function  of  v. 

With  the  help  of  these  results  it  is  easy  to  obtain  the 

magnitudes  (£,i?,£)>  tf  we  express  by  means  of  equations 

the  fact  that  light,  when  measured  in  the  moving  system 

is  always  propagated  with  the  constant  velocity  c  (as 

the  principle  of  constancy  of  light  velocity  in  conjunc 

tion  with  the  principle  of  relativity  requires).  For  a 
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time  T=O,  if  the  ray  is  sent  in  the   direction  of   increasing 

£,  we  have 

Now  the  ray  of  light  moves  relative  to  the  origin  of  Jc 

with  a  velocity  c— r,  measured  in  the  stationary  system  ; 
therefore  we  have 

Substituting  these  values  of  t   in    the   equation    for  £, 
we  obtain 

In  an  analogous  manner,   we  obtain  by  considering   the 

ray  of  light  which    moves  along  the  ̂ -axis, 

where  -y         , 

c  .,    c 

If  for  .</,  we  substitute  its  value  x — tv,  we  obtain 

/         v.i-  \ 
V         c*    / 

t=4>  (»).  /8  (*-»«), 

where  ff=    .•  •—    t  ,  and  <£  (f)= — =r-!=r^  =  —  is  a  function 
vi— v*  Vc*—v*       P 

^ 
of  v. 
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/ 

If  we  make  no  assumption  about  the  initial  position 

of  tlu-  moving  system  and  about  the  null-point  of  tt 
then  an  additive  constant  is  to  be  added  to  the  right 
hand  side. 

We  have  now  to  show,  that  every  ray  of  light  moves 

in  the  moving  system  with  a  velocity  c  (when  measured  in 

the  moving  system),  in  case,  as  we  have  actually  assumed, 

c  is  also  the  velocity  in  the  stationary  system  ;  for  we  have 

not  as  yet  adduced  any  proof  in  support  of  the  assump 

tion  that  the  principle  of  relativity  is  reconcilable  with  the 

principle  of  constant  light-velocity. 

Atatimer  =  /  =  o    let    a    spherical    wave    be    sent  out 

from  the  common  origin  of  the  two  systems  of  co-ordinates, 

and  let  it  spread    with  a  velocity  c  in    the  system    K.     If 

(•>'}  >/>  *)>    De    a    point    reached     by    the     wave,   we    have 

a.2+2/2  +  .»_C2^> 

with    the    aid    of     our    transformation-equations,      let     us 

transform   this    equation,     and    we    obtain     by    a    simple 
calculation, 

£2+772+£2=czTs. 

Therefore  the  wave  is  propagated  in  the  moving  system 

with  the  same  velocity  c,  and  as  a  spherical  wave.*  Therefore 
we  show  that  the  two  principles  are  mutually  reconcilable. 

In  the  transformations  we  have  go:  an  undetermined 

function  <j>  (v),  and  wo  now  proceed  to  find  it  out. 

Let  us  introduce  for  this  purpose  a  third  co-ordinate 

system  k1 ' ,  which  is  set  in  motion  relative  to  the  system  X-, 
the  motion  being  parallel  to  the  £-axis.  Let  the  velocity  of 

the  origin  be  (  —  r).  At  the  time  t  =  o,  all  the  initial 

co-ordinate  points  coincide,  and  for  f  =  ,<  =y  =  z  =  n,  the 

time  t'  of  the  system  k'  =  o.  We  shall  say  that  (./  y'  ;'  /') 

are  the  co-ordinates  measured  in  the  system  k' ,  then  by  a 
*  Vide  Note  9. 
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two-fold   application  of   the    transformation-equations,  we 
obtain 

-v>,  etc. 

Since  the  relations  between  (/,  y',  z'  ,  t'},  and  (x,  y,  z,  t) 

do  not  contain  time  explicitly,  therefore  K  and  k'  are 
relatively  at  rest. 

It  appears  that  the  systems  K  and  k'  are  identical. 

Let  us  now  turn  our  attention  to  the  part  of  the  y-axis 

between  (£  =  0,  77  =  0,  £  =  o),  and  (£=o,  >/  =  ],  £=0).  Let 

this  piece  of  the  y-axis  be  covered  with  a  rod  moving  with 

the  velocity  v  relative  to  the  system  K  and  perpendicular 

to  its  axis  ;  —  the  ends  of  the  rod  having  therefore  the 
co-ordinates 

Therefore  the  length  of  the  rod  measured  in  the  system 

K  is  ~T7~y     For   the    system  moving  with  velocity  (  —  ?'), 

we  have  on  grounds  of  symmetry, 

Z  Z 
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§  4.    The  physical  significance  of  the  equations 
obtained  concerning  moving  rigid 

bodies  and  moving  clocks. 

Let  us  consider  a  rigid  sphere  (i.e.,  one  having  a 

spherical  figure  when  tested  in  the  stationary  system)  of 

radius  R  which  is  at  rest  relative  to  the  system  (K),  and 

whose  centre  coincides  with  the  origin  of  K  then  the  equa 

tion  of  the  surface  of  this  sphere,  which  is  moving  with  a 
velocity  v  relative  to  K,  is 

At    time    t  —  o,   the  equation  is  expressed  by  means  of 

A  rigid  body  which  has  the_figure  of  a  sphere  when 

measured  in  the  moving  system,  has  therefore  in  the 

moving  condition — when  considered  from  the  stationary 

system,  the  figure  of  a  rotational  ellipsoid  with  semi-axes 

Therefore  the  y  and  z  dimensions  of  the  sphere  (there 

fore  of  any  figure  also)  do  not  appear  to  be  modified  by  the 
motion,  but  the  x  dimension  is  shortened  in  the  ratio 

1:   'V  1    ;     the    shortening   is   the    larger,    the   larger 

is  v.  For  v  =  c,  all  moving  bodies,  when  considered  from 

a  stationary  system  shrink  into  planes.  For  a  velocity 

larger  than  the  velocity  of  light,  our  propositions  become 
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meaningless  ;  in  our  theory  c  plays  the  part  of  infinite 
velocity. 

It  is  clear  that  similar  results  hold  about  stationary 

bodies  in  a  stationary  system  when  considered  from  a 

uniformly  moving  system. 

Let  us  now  consider  that  a  clock  which  is  lying  at  rest 

in  the  stationary  system  gives  the  time  f,  and  lying 

at  rest  relative  to  the  moving  system  is  capable  of  giving 

the  time  r  ;  suppose  it  to  be  placed  at  the  origin  of  the 

moving  system  X-,  and  to  be  so  arranged  that  it  gives  the 
time  T.  How  much  does  the  clock  gain,  when  viewed  from 

the  stationary  system  K  ?  We  have, 

V  I- 
|    t—  7i»    \, 7i»    \,  and  x=vt, 

Therefore  the  clock  loses  by  an    amount  ̂ "2  Per  second 

of  motion,  to  the  second  order  of  approximation. 

From  this,  the  following  peculiar  consequence  follows. 

Suppose  at  two  points  A  and  B  of  the  stationary  system 

two  clocks  are  given  which  are  synchronous  in  the  sense 

explained  in  §  '3  when  viewed  from  the  stationary  system. 
Suppose  the  clock  at  A  to  be  set  in  motion  in  the  line 

joining  it  with  B,  then  after  the  arrival  of  the  clock  at  B, 

they  will  no  longer  be  found  synchronous,  but  the  clock 

which  was  set  in  motion  from  A  will  lag  behind  the  clock 
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t  is  the  time  required  for  the  journey. 
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We  see  forthwith  that  the  result  holds  also  when  the 

clock  moves  from  A  to  B  by  a  polygonal  line,  and  also 
when  A  and  B  coincide. 

If  we  assume  that  the  result  obtained  for  a  polygonal 

line  holds  also  for  a  curved  line,  we  obtain  the  following 

law.  If  at  A,  there  be  two  synchronous  clocks,  and  if  we 

set  in  motion  one  of  them  with  a  constant  velocity  along  a 

closed  curve  till  it  comes  back  to  A,  the  journey  being 

completed  in  /'-seconds,  then  after  arrival,  the  last  men- 

01 

tioned    clock    will    be   behind  the  stationary  one  by  \t  ~ 

seconds.  From  this,  we  conclude  that  a  clock  placed  at 

the  equator  must  be  slower  by  a  very  small  amount  than  a 

similarly  constructed  clock  which  is  placed  at  the  pole,  all 

other  conditions  being  identical. 

§  5.    Addition-Theorem  of  Velocities. 

Let  a  point  move  in  the  system  k  (which  moves  with 

velocity  v  along  the  ;r-axis  of  the  system  K)  according  to 
the  equation 

£='Y'     1?  =  M',T,     £  =  0, 

'where  t/'|  and  w    are  constants. 

It  is  required  to  find  out  the  motion  of  the  point 

relative  to  the  system  K.  If  we  now  introduce  the  system 

of  equations  in  §  3  in  the  equation  of  motion  of  the  point, 
we  obtain 

w f  +  v              \           c»    /  "" ;=  —1    t,  y—    
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The  law  of   parallelogram  of  velocities    hold  up  to  the 

first  order  of  approximation.     We  can  put 

1C 

and  u  =  tan"1  — 

i.e.,  a  is  put  equal  to  the  angle    between   the    velocities    v, 

and  w.     Then  we  have — 

u= 
r/  o                                    \       /    vw  sin  a  \     "1 : [(»• +  /<••+ 2  vw  cos  a)—  I      j 

,         /•/(•  cos  -i ., 

It  should  be  noticed  that  r-  and  w  outer  into  the 

expression  for  velocity  symmetrically.  If  iv  has  the  direction 

of  the  v-axis  of  the  moving  system, 

TT  
f+"' 

From  this  equation,  \ve  see  that  by  combining  two 

velocities,  each  of  which  is  smaller  than  c,  we  ojbtain  a 

velocity  which  is  always  smaller  than  <•.  If  we  put  v=c—  %, 
and  w=c—\,  where  x  and  A.  are  each  smaller  than  c, 

It  is  also  clear  that  the  velocity  of  light  c  cannot  be 

altered  by  adding  to  it  a  velocity  smaller  than  c.  For  (his 
case, 

Fufo  Note  12. 
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We  have  obtained  the  formula  for  U  for  the  case  when 

v  and  w  have  the  same  direction,  it  can  also  be  obtained 

by  combining  two  transformations  according  to  section 

§  3.  If  in  addition  to  the  systems  K,  and  k,  we  intro 

duce  the  system  k',  of  which  the  initial  point  moves 
parallel  to  the  £-axis  with  velocity  w,  then  between  the 

magnitudes,  x,  y,  z,  t  and  the  corresponding  magnitudes 

of  k',  we  obtain  a  system  of  equations,  which  differ  from 
the  equations  in  §3,  only  in  the  respect  that  in  place  of 
r,  we  shall  have  to  write, 

We  see  that  such  a  parallel  transformation  forms  a 

group. 

Wo  have  deduced  the  kinematics  corresponding  to  our 

two  fundamental  principles  for  the  laws  necessary  for  us, 

and  we  shall  now  pass  over  to  their  application  in  electro 
dynamics. 

*II.— ELECTKODYNAMICAL  PART. 

§  6.    Transformation  of  Maxwell's  equations  for 
Pure  Vacuum. 

On  the  nature  of  lite  Electromotive  Force  caused  by  motion 

in  a  magnetic  field. 

The  Maxwell-Hertz  equations  for  pure  vacuum  may 
hold  for  the  stationary  system  K,  so  that 

-     -?-  [X,  Y,  /]  = 

9     JL 
9<     dy 

M       N 
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and 

i    a 
a     a    j 
3-«    6y    3 

X        Y      Z 

.-     (1) 

where    [X,    Y,    Z]    are    the   components   of     the    electric 

force,  L,  M,  N  are  the  components  of  the  magnetic  force. 

If  we  apply  the  transformations  in  §3  to  these  equa 

tions,  and  if  we  refer  the  electromagnetic  processes  to  the 

co-ordinate  system  moving  with  velocity  r,  we  obtain, 

[X, 

-  -  N), 

and 

a al 

X   /8(Y-  ?  N)    j8(Z+  -M) 
c  <• 

The  principle  of  Relativity  requires  that  the  Maxwell- 
Hertzian  equations  for  pure  vacuum  shall  hold  also  for  the 

system  k,  if  they  hold  for  'he  system  K,  i.e.,  for  the 
vectors  of  the  electric  and  magnetic  forces  acting  upon 

electric  and  magnetic  masses  in  the  moving  system  k, 
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which  are  defined  by  their  pondermotive  reaction,  the  same 

equations  hold,  . . .  i.e.  . . . 

1    J     (X',  Y',  Z')  = c     o  T 

a.      6      _a 
6f       di)      3£ 

L'        M'        N' 

a 9* 

y 

...     (3) 

Clearly  both  the  systems  of  equations  (2)  and  (3) 

developed  for  the  system  k  shall  express  the  same  things, 

for  both  of  these  systems  are  equivalent  to  the  Maxwell- 
Hertzian  equations  for  the  system  K.  Since  both  the 

systems  of  equations  (2)  and  (3)  agree  up  to  the  symbols 

representing  the  vectors,  it  follows  that  the  functions 

occurring  at  corresponding  places  will  agree  up  to  a  certain 

factor  $  (v),  which  depends  only  on  v,  and  is  independent  of 

(£»  V>  £>  T)'  Hence  the  relations, 

[X',  Y',  Z']=V  (r)  [X,  ft  (Y-  ?X),  ft  (Z+  ̂ M)], 

[L',  M',  N']=*  (r)  [L,  /i  (M  +  ?Z;,  0  (X-  ''  Y)]. 

Then  by  reasoning  similar    to   that   followed   in    §(3), 

it  can  be  shown  that  ̂ (r)  =  l. 

.-.       [X',  Y',  Z']  =  [X,  ft  (Y-  f  N),  j8  (/+  ';  M  )j 

[  L'.  W.  N']  =  [L, 
.^Z),  £(N--rY)]. 
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For  the  interpretation  of  these  equations,  we  make  the 

following  remarks.  Let  us  have  a  point-mass  of  electricity 

which  is  of  magnitude  unity  in  the  stationary  system  K, 

i.e.,  it  exerts  a  unit  force  upon  a  similar  quantity  placed  at 

a  distance  of  1  cm.  If  this  quantity  of  electricity  be  at 

rest  in  the  stationary  system,  then  the  force  acting  upon  it 

is  equivalent  to  the  vector  (X,  V,  Z)  of  electric  force.  But 

if  the  quantity  of  electricity  be  at  rest  relative  to  the 

moving  system  (at  least  for  the  moment  considered),  then 

the  force  acting  upon  it,  and  measured  in  the  moving 

system  is  equivalent  to  the  vector  (X',  Y',  Z').  The  first 
three  of  equations  (1),  (2),  (3),  can  be  expressed  in  the 

following  way  : — 

1.  If  a  point-mass  of  electric  unit  pole  moves  in  an 

electro-magnetic  field,  then  besides  the  electric  force,  an 

electromotive  force  acts  upon  it,  which,  neglecting  the 

numbers  involving  the  second  and  higher  powers  of  v/c, 

is  equivalent  to  the  vector-product  of  the  velocity  vector, 
and  the  magnetic  force  divided  by  the  velocity  of  light 

(Old  mode  of  expression). 

•2.  If  a  point-mass  of  electric  unit  pole  moves  in 
an  electro-magnetic  field,  then  the  force  acting  upon  it  is 

equivalent  to  the  electric  force  existing  at  the  position  of 

the  unit  pole,  which  we  obtain  by  the  transformation  of 

the  field  to  a  co-ordinate  system  which  is  at  rest  relative 

to  the  electric  unit  pole  [New  mode  of  expression]. 

Similar  theorems  hold  with  reference  to  the  magnetic 

force.  We  st-e  that  in  the  theory  developed  the  electro 

magnetic  force  plays  the  psirt  of  an  auxiliary  concept, 

which  owes  its  introduction  in  theory  to  the  circumstance 

that  the  electric  and  magnetic  forces  possess  no  existence 

independent  of  the  nature  of  motion  of  the  co-ordinate 

system. 
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It  is  further  clear  that  the  assymetry  mentioned  in  the 
introduction  which  occurs  when  we  treat  of  the  current 

excited  by  the  relative  motion  of  a  magnet  and  a  con 

ductor  disappears.  Also  the  question  about  the  seat  of 

electromagnetic  energy  is  seen  to  be  without  any  meaning. 

§  7.    Theory  of  Doppler's  Principle  and  Aberration. 

In  the  system  K,  at  a  great  distance  from  the  origin  of 

co-ordinates,  let  there  be  a  source  of  electrodynamic  waves, 

which  is  represented  with  sufficient  approximation  in  a  part 

of  space  not  containing  the  origin,  by  the  equations  : — 

I 
Z  =  Z0    sin  *  J        N=N0  sin  *    } 

Here  (X0,  Y0,  Z0)  and  (L0,  M0,  N0)  are  the  vectors 

which  determine  the  amplitudes  of  the  train  of  waves, 

(I,  m,  n]  are  the  direction-cosines  of  the  wave-normal. 

Let  us  now  ask  ourselves  about  the  composition  of 

these  waves,  when  they  are  investigated  by  an  observer  at 

rest  in  a  moving  medium  A  : — By  applying  the  equations  of 
transformation  obtained  in  §6  for  the  electric  and  magnetic 

forces,  and  the  equations  of  transformation  obtained  in  §  3 

for  the  co-ordinates,  and  time,  we  obtain  immediately  : — 

L/=Ln  sin*' 
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where 

,  n  = 

1-'
 From  the  equation  for  w'  it  follows  : — If  an  observer  moves 

with  the  velocity  r  relative  to  an  infinitely  distant  source 

of  light  emitting  waves  of  frequency  v,  in  such  a  manner 

that  the  line  joining  the  source  of  light  and  the  observer 

makes  an  angle  of  4>  with  the  velocity  of  the  observer 

referred  to  a  system  of  co-ordinates  which  is  stationary 

with  regard  to  the  source,  then  the  frequency  v'  which 
is  perceived  by  the  observer  is  represented  by  the  formula 

\ 

This  is  Doppler's  principle  for  any   velocity. 
then  the  equation  takes  the  simple  form 

If   4>= 

1  + 

We  see  that — contrary  to  the  usual  conception — v=oo, 
for  v  =  —  c. 

If  $'=angle  between  the  wave-normal  (direction  of  the 
ray)  in  the  moving  system,  and  the  line  of  motion  of  the 

observer,  the  equation  for  /'  takes  the  form 

1  —  -  cos  4> 
e 
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This  equation  expresses  the  law  of  observation  in  its 

most  gen eral  form.  If  <£=-,  the  equation  takes  the 

simple  form 

We  have  still  to  investigate  the  amplitude  of  the 

waves,  which  occur  in  these  equations.  If  A  and  A'  be 
the  amplitudes  in  the  stationary  and  the  moving  systems 

(either  electrical  or  magnetic),  we  have 

(1  —  —  cos  4>   I 
c  ) 

If  4>=o,  this  reduces  to  the  simple  form 

A'8=A' 

From  these  equations,  it  appears  that  for  an  observer, 

which  moves  with  the  velocity  c  towards  the  source  of 

light,  the  source  should  appear  infinitely  intense. 

§  8.    Transformation  of  the  Energy  of  the  Bays  of 

Light.     Theory  of  the  Radiation-pressure 
on  a  perfect  mirror. 

Since  is  equal    to   the  energy   of   light   per   unit 

07T 

volume,  we  have  to  regard    J  —  as  the  energy  of   light   in 
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A'* 

the    moving    system.        '    _   would    therefore    denote    the A. 

ratio  between  the  energies  of  a  definite  light-complex 

"measured  when  moving"  and  "measured  when  stationary/' 
the  volumes  of  the  light-complex  measured  in  K  and  k 

being  equal.  Yet  this  is  not  the  case.  If  /,  m,  u  are  the 

direction-cosines  of  the  wave-normal  of  light  in  the 

stationary  system,  then  no  energy  passes  through  the 

surface  elements  of  the  spherical  surface 

(.1-  — 

which  expands  with  the  velocity  oi'  light.  We  can  therefore 
say,  that  this  surface  always  encloses  the  same  light-complex. 

Let  us  now  consider  the  quantity  of  energy,  which  this 

surface  encloses,  when  regarded  from  the  svstem  k,  i.e., 

the  energy  of  the  light-complex  relative  to  the  svstem 
A-. 

Regarded  from  the  moving  system,  the  spherical 

surface  becomes  an  ellipsoidal  surface,  having,  at  the  time 

r  =  0,  the  equation  :  — 

If     S=  volume     of     the     sphere,     S'  =  volume    of     this 
ellipsoid,  then  a  simple  calculation  shows  that  : 

S'   ft 

s  " 

—  -       OOS  <t> 

If  E  denotes  the  quantity  of  light  energy    measured    in 

the    stationary    system,    E'    the    quantity  measured  in  the 
4 
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moving     system,     which     are   enclosed     by   the   surfaces 

mentioned  above,  then 

E       A2   Q  Vl-v*/c* 

8^S
 

If  4>=0,  we  have  the  simple  formula  : — 

It  is  to  be  noticed  that  the  energy  and  the  frequency 

of  a  light-complex  vary  according  to  the  same  law  with 
the  state  of  motion  of  the  observer. 

Let  there  be  a  perfectly  reflecting  mirror  at  the  co-or 

dinate-plane  £=0,  from  which  the  plane-wave  considered 
in  the  last  paragraph  is  reflected.  Let  us  now  ask  ourselves 

about  the  light-pressure  exerted  on  the  reflecting  surface 
and  the  direction,  frequency,  intensity  of  the  light  after 
reflexion. 

Let  the  incident  light  be  defined  by  the  magnitudes 

A  cos  $,  r  (referred  to  the  system  K).  Regarded  from  A-, 
we  have  the  corresponding  magnitudes  : 

i       v 
1—       cos  4> A'  =  A 

cos  4>—    1 

cos  <*>'  = 

v'  =  v   

,••• 

~c~« 
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For  the    reflected    light    we  obtain,    when    the    process 

is  referred  to  the  system  k  :  — 

A    =A',  cos  <$"  =  —  cos  <£',  v"  =  v'. 

By   means  of  a   back-transformation  to  the  stationary 

system,  we  obtain  K,  for  the  rellected  light  :  — 

A"'  =  A"    -  =A 

/  1     v* V   l~^ 

COS    <t> 
Cos4>"  +   »  (1+   - 

,„_  _    c_  __   \         c' 
" 

1+   ̂   cos  $"         1  —  2  r  cos  <£  +  '"* "  •    C  '•' 

(H)' 

•/      =•/  =!/ 

The  amount  or  energy    falling    upon    the    unit    surface 

of  the  mirror  per  unit  of  time  (measured    in  the   stationary 

system)   is        .     The  amount   of  energy  going 
87r(c  cos  <£— «) 

away  from  unit  surface  of  the  mirror  per  unit  of  time  is 

A'""/8w  (— c  cos  <I>"+r).  The  difference  of  these  two 
expressions  is,  according  to  the  Energy  principle,  the 

amount  of  work  exerted,  by  the  pressure  of  light  ]>er  unit 

of  time.  If  we  put  this  eijiial  to  P.r,  where  P=  pressure 
of  light,  we  have 

(cos  *    —      -  | 
,,_.,    Aa     V  _£/ 

1- 
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As  a  first  approximation,  we  obtain 

P=-2  ¥-  <*>»*  4>. 
8» 

which    is     in    accordance     with     facts,     and     with     other 
theories. 

All  problems  of  optics  of  moving  bodies  can  be  solved 

after  the  method  used  here.  The  essential  point  is,  that 

the  electric  and  magnetic  forces  of  light,  which  are 

influenced  by  a  moving  body,  should  be  transformed  to  a 

system  of  co-ordinates  which  is  stationary  relative  to  the 

body.  In  this  way,  every  problem  of  the  optics  of  moving 
bodies  would  be  reduced  to  a  series  of  problems  of  the 

optics  of  stationary  bodies. 

§  9.   Transformation  of  the  Maxwell-Hertz  Equations. 

Let  us  start  from  the  equations  : — 

M  1      1  ?>L     r>Y      ft  7   1 , 

'" 

dt 
I/        _i.9Y\  -91  -9-?          iaM_8Z_ax 
c  \pu*      dt)  ~  d=     a.<-  r  c  a^     a.'1    a- 

l(        4-9j?\  =9^I_9JJ 
c  \pu>        dt  )       Q.e      dy 

_ 
c~dt    "a.- 

_ 

Qy      6 

where     = 
oy 

,  denotes  ±TT   times  the  density 

of  electricity,  and  (?t,,  ?«„,  ttr)  are  the  velocity-components 

of  electricity.  If  we  now  suppose  that  the  electrical- 

masses  are  bound  unchangeably  to  small,  rigid  bodies 
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(Ion*,  electrons),  then  these  equations  form  the  electromag 

netic  basis  of  Lorentz's  electrodynamics  and  optics  for 
moving  bodies. 

If  these  equations  which  hold  in  the  system  K,  are 

transformed  to  the  system  /,•  with  the  aid  of  the  transfor 

mation-equations  given  in  §  -3  and  §  (5,  then  we  obtain 

the  equations  :  — 

1  f  ,' 
C  I 

 P 

_  ___ 
67?  9£  dr         8*         67; 

9Z.'l  = 
Qr    J 

*    T8r    J-     87  dr,     ' 

where 

-•„'- 

Since  the  vector   (/^      «        //x   )    is     nothing    but    the £  >     T?  >     4 

velocity  of  the  electrical  mass  measured  in  the  system  A-, 
as  can  be  easily  seen  from  the  addition-theorem  of 

velocities  in  §  \ — so  it  is  hereby  shown,  that  by  taking 
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our  kineinatical  principle  as  the  basis,  the  electromagnetic 

basis  of  Loreutz's  theory  of  electrodynamics  of  moving 
bodies  correspond  to  the  relativity-postulate.  It  can  be 

briefly  remarked  here  that  the  following  important  law 

follows  easily  from  the  equations  developed  in  the  present 

section  : — if  an  electrically  charged  body  moves  in  any 
manner  in  space,  and  if  its  charge  does  not  change  thereby, 

when  regarded  from  a  system  moving  along  with  it,  then 

the  charge  remains  constant  even  when  it  is  regarded  from 

the  stationary  system  K. 

§  10.    Dynamics  of  the  Electron  (slowly  accelerated). 

Let  us  suppose  that  a  point-shaped  particle,  having 
the  electrical  charge  e  (to  be  called  henceforth  the  electron) 

moves  in  the  electromagnetic  field  ;  we  assume  the 

following  about  its  law  of  motion. 

If  the  electron  be  at  rest  at  any  definite  epoch,  then 

in  the  next  "particle  of  time,"  the  motion  takes  place 
according  to  the  equations 

n  d*i =     w  *• =     z  rf<- •= 

Where  (a-,  y,  .?)  are  the  co-ordinates  of  the  electron,  and 
m  is  its  mass. 

Let  the  electron  possess  the  velocity  v  at  a  certain 

epoch  of  time.  Let  us  now  investigate  the  laws  according 

to  which  the  electron  will  move  in  the  'particle  of  time ' 
immediately  following  this  epoch. 

Without  influencing  the  generality  of  treatment,  we  can 

and  we  will  assume  that,  at  the  moment  we  are  considering, 
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the  electron  is  at  the  origin  of  co-ordinates,  and  moves 

with  the  velocity  v  along  the  X-axis  of  the  system.  It  is 

clear  that  at  this  moment  (^=0)  the  electron  is  at  rest 

relative  to  the  system  A,  which  moves  parallel  to  the  X-axis 

with  the  constant  velocity  r. 

From  the   suppositions   made   above,    in    combination 

with    the  principle    of    relativity,    it  is  clear  that  regarded 

from  the  system  k,  the  electron  moves  according  to  the 

equations 

dr* 
in  the  time  immediately  following  the  moment,  where  the 

symliols  (£,  rj,  £,  T,  X',  Y',  Z')  refer  to  the  system  A\  If  we 

now  fix,  that  for  t  —  .v=y-z=(\  T=g  =  i)  =  £=Q,  then  the 

equations  of  transformation  ^iven  in  •'{  (and  (5)  hold,  and  we 
have  : 

With  the  aid  of  these  equations,  we  can  transform  the 

above  equations  of  motion  from  the  system  A-  to  the  system 

K,  and  obtain  :  — 

Z8,-    _  <•_      1   y      d*y         e_   I  ( y_   r 

<//«        vn      J5»     '       (//"        ,n   f 
(A) 
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Let  us  now  consider,  following  the  usual  method  of 

treatment,  the  longitudinal  and  transversal  mass  of  a 

moving  electron.  We  write  the  equations  (A)  in  the  form 

"•      =eX=eX' 

?  M]  = 

and  let  us"  first  remark,  that  <?X',  eY',  ?Z'  are  the  com 
ponents  of  the  ponderomotive  force  acting  upon  the 

electron,  and  are  considered  in  a  moving  system  which,  at 

this  moment,  moves  with  a  velocity  which  is  equal  to  that 

of  the  electron.  This  force  can,  for  example,  be  measured 

by  means  of  a  spring-balance  which  is  at  rest  in  this  last 

system.  If  we  briefly  call  this  force  as  "the  force  acting 

upon  the  electron,"  and  maintain  the  equation  :  — 
Mass-number  x  aeceleration-number=force-number,  and 

if  we  further  fix  that  the  accelerations  are  measured  in 

the  stationary  system  K,  then  from  the  above  equations, 

we  obtain  :  — 

Longitudinal 

Transversal  mass  = 

Naturally,  when  other  definitions  are  given  of  the  force 

and  the   acceleration,    other   numbers   are  obtained  f^r  the 

*  Vide  Note  21. 
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mass ;  hence  we  see  that  we  must  proceed  very  carefully 
in  comparing  the  different  theories  of  the  motion  of  the 
electron. 

\Ve  remark  that  this  result  about  the  mass  hold  also 

for  ponderable  material  mass  ;  for  in  our  sense,  a  ponder* 

able  material  point  may  be  made  into  an  electron  by  the 

addition  of  an  electrical  charge  which  may  be  as  small  as 

possible. 

Let  us  now  determine  the  kinetic  energy  of  the 

electron.  It'  the  electron  moves  from  the  origin  of  co-or 
dinates  of  the  system  K  with  the  initial  velocity  0  steadily 

along  the  X-axis  under  the  action  of  an  electromotive 

force  X,  then  it  is  clear  that  the  energy  drawn  from  the 

electrostatic  field  has  the  value  /<?X^--.  Since  the  electron 

is  only  slowly  accelerated,  and  in  consequence,  no  energy 

is  given  out  in  the  form  of  radiation,  therefore  the  energy 

drawn  from  the  electro-static  field  may  be  put  equal  to 
the  energy  W  of  motion.  Considering  the  whole  process  of 

motion  in  questions,  the  iirst  of  equations  A)  holds,  we 
obtain  : — 

For  v  =  c,  *\\  is  infinite!]  great.  A>  our  former  result 
shows,  vel'iritir.-  >'\<vco!iiig  that  of  light  can  have  no 

possibility  of  existent' 

In  consequence  of  the  arguments  mentioned  above, 

this  expression  for  kinetic  energy  must  also  hold  for 

ponderable  masse*. 

\Ye     can     now     enumerate     the   characteristics    of     the 

motion  of  the  electron     H\,ulaMe    for  experimental  verifica 

tion,  which  follow  from  equations  A). 
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1.  From  the  second  of  equations  A)  ;    it  follows  that 

an    electrical    force    Y,    and    a    magnetic    force  N   produce 

equal  deflexions  of  an  electron  moving  with    the   velocity 

v,    when  Y=  _^  .     Therefore   we    see   that   according  to 

our  theory,  it  is  possible  to  obtain  the  velocity  of  an 

electron  from  the  ratio  of  the  magnetic  deflexion  Am,  and 

the  electric  deflexion  A,,  by  applying  the  law  : — 

A.      t> 

A,      c    ' 
This  relation  can  be   tested   by   means  of  experiments 

because   the   velocity    of    the    electron    can  be    directly 

measured  by  means  of  rapidly  oscillating  electric  and 

magnetic  fields. 

2.  vFrom    the    value  which  is  deduced   for  the   kinetic 

energy  of  the  electron,  it  follows  that  when  the  electron 

falls  through  a  potential  difference    of    P,    the  velocity  v 

which  is  acquired  is  given  by  the  following  relation  : — 

p=(  xd<;=™c2  r  — l     -ii . 
J        •    L0-?     J 

8.  We  calculate  the  radius  of  curvature  R  of  the 

path,  where  the  only  deflecting  force  is  a  magnetic  force  N 

acting  perpendicular  to  the  velocity  of  projection.  From 
the  second  of  equations  A)  we  obtain  : 

_d*y    ̂       ̂     rK 
<«•      R      ,».   c  , 

H=  ""
^ 

.  \ 

These  three  relations  are  complete  expressions  for  the 

law  of  motion  of  the  electron  according  to  the  above 
theory. 



ALBRECHT    EINSTEIN 

[y/  s/turf  l>iot/i-a/j//i<'<it  t/o/e.] 

The  name  of  Prof.  Albrecht  Einstein  has  now  spread  far 

beyond  the  narrow  pale  of  scientific  investigators  owing  to 

the  brilliant  confirmation  of  his  predicted  deflection  of 

light-rays  by  the  gravitational  field  of  the  sun  during  the 
total  solar  eclipse  of  May  29,  1919.  But  to  the  serious  / 

student  of  science,  he  has  been  known  from  the  beginning 

of  the  current  century,  and  many  dark  problems  in  physics 

has  been  illuminated  with  the  lustre  of  his  genius,'  before, 
owing  to  the  latest  sensation  just  mentioned,  he  Hashes  out 

before  public  imagination  as  a  scientific  star  of  the  first 

magnitude. 

Einstein  is  a  Swiss-German  of  Jewish  extraction,  and 

began  his  scientific  career  as  a  privat-dozent  in  the  Swiss 
University  of  Zurich  about  the  year  1902.  Later  on,  he 

migrated  to  the  German  University  of  Prague  in  Bohemia  / 

as  ausser-ordentliche  (or  associate)  Professor.  In  19!  4,  * 
through  the  exertions  of  Prof.  M.  Planck  of  the  Berlin 

University,  he  was  appointed  a  paid  member  of  the  Hoyal 

(now  National)  Prussian  Academy  of  Sciences,  on  a 

salary  of  18,000  marks  per  year.  In  this  post,  he  has 

only  to  do  and  guide  research  work.  Another  distinguished 

occupant  of  the  same  post  was  Yan't  ilofY,  the  eminent 
physical  chemist. 

It  is  rather  difficult  to  give  a  detailed,  and  consistent 

chronological  account  of  his  scientific  activities, — they  are 
so  variegated,  and  cover  such  a  wide  field.  The  first  work 

which  gained  him  distinction  was  an  investigation  on 
Brownian  Movement.  An  admirable  account  will  be  found 

in  Perrin's  book  'The  Atoms.'  Starting  from  Boltzmann's 
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theorem  connecting  the  entropy,  and  the  probability  of  a 

state,  he  deduced  a  formula  on  the  mean  displacement  of 

small  particles  (colloidal)  suspended  in  a  liquid.  This 

formula  gives  us  one  of  the  best  methods  for  finding  out  a 

very  fundamental  number  in  physics — namely — the  number 

of  molecules  in  one  gm.  molecule  of  gas  (Avogadro's 
number).  The  formula  was  shortly  afterwards  verified  by 

Perrin,  Prof,  of  Chemical  Physics  in  the  Sorbonne,  Paris. 

To  Einstein  is  also  due  the  resusciation  of  Planck's 

quantum  theory  of  energy-emission.  This  theory  has  not 

yet  caught  the  popular  imagination  to  the  same  extent  as 

the  new  theory  of  Time,  and  Space,  but  it  is  none  the  less 

iconoclastic  in  its  scope  as  far  as  classical  concepts  are 

concerned.  It  was  known  for  a  long  time  that  the 

observed  emission  of  light  from  a  heated  black  body  did 

not  correspond  to  the  formula  which  could  be  deduced  from 
the  older  classical  theories  of  continuous  emission  and 

propagation.  In  the  year  1900,  Prof\  Planck  of  the  Berlin 

University  worked  out  a  formula  which  was  based  on  the 

bold  assumption  that  energy  was  emitted  and  absorbed  by 

the  molecules  in  multiples  of  the  quantity  hv,  where  // 

is  a  constant  (which  is  universal  like  the  constant  of 

gravitation),  and  v  is  the  frequency  of  the  light. 

The  conception  was  so  radically  different  from  all 

accepted  theories  that  in  spite  of  the  great  success  of 

Planck's  radiation  formula  in  explaining  the  observed  facts 
of  black-body  radiation,  it  did  not  meet  with  much  favour 
from  the  physicists.  In  fact,  some  one  remarked  jocularly 

that  according  to  Planck,  energy  flies  out  of  a  radiator  like 

a  swarm  of  gnats. 

But  Einstein  found  a  support  for  the  new-born  concept 
in  another  direction.  It  was  known  that  if  green  or  ultraviolet 

light  was  allowed  to  fall  on  a  plate  of  some  alkali  metal, 

the  plate  lost  electrons.  The  electrons  were  emitted  with 
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all  velocities,  but  there  is  generally  a  maximum  limit. 

From  the  investigations  of  Lenard  and  Ladenburg,  the 

curious  discovery  was  made  that  this  maximum  velocity  of 

emission  did  not  at  all  depend  upon  the  intensity  of  light, 

but  upon  its  wavelength.  The  more  violet  was  the  light, 

the  greater  was  the  velocity  of  emission. 

To  account  for  this  fact,  Einstein  made  the  bold 

assumption  that  the  light  is  propogated  in  space  as  a  unit 

pulse  (he  calls  it  a  Light-cell),  and  falling  upon  an 
individual  atom,  liberates  electrons  according  to  the  energy 

equation 

liv=-  -ftnv^  +  A, 

where  (in,  r)  are  the  mass  and  velocity  of  the  electron. 

A  is  a  constant  characteristic  of  the  metal  plate. 

There  was  little  material  for  the  confirmation  of  this 

law  when  it  was  first  proposed  (1905),  and  eleven  years 

elapsed  before  Prof.  Millikan  established,  by  a  set  of 

experiments  scarcely  rivalled  for  the  ingenuity,  skill,  and 

care  displayed,  the  absolute  truth  of  the  law.  As  results  of 

this  confirmation,  and  other  brilliant  triumphs,  the  quantum 

law  is  now  regarded  as  a  fundamental  law  of  Energetics. 

In  recent  years,  X'rays  have  been  added  to  the  domain  of 

light,  and  in  this  direction  also,  Einstein's  photo-electric 
formula  has  proved  to  be  one  of  the  most  fruitful 

conceptions  in  Physics. 

The  quantum  law  was  next  extended  by  Einstein  to  the 

problems  of  decrease  of  specific  heat  at  low  temperature, 

and  here  also  his  theory  was  confirmed  in  a  brilliant 
manner. 

We  pass  over  his  other  contributions  to  the  equation  of 

state,  to  the  problems  of  null-point  energy,  and  photo 

chemical  reactions.  The  recent  experimental  works  of 
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Nernst  and  Warburg  seem  to  indicate  that  through 

Einstein's  genius,  we  are  probably  for  the  first  time  having 
a  satisfactory  theory  of  photo-chemical  action. 

In  191."),  Einstein  made  an  excursion  into  Experimental 
Physics,  and  here  also,  in  his  characteristic  way,  he  tackled 

one  of  the  most  fundamental  concepts  of  Physics.  It  is 

well-known  that  according-  to  Ampere,  the  magnetisation 
of  iron  and  iron-like  bodies,  when  placed  within  a  coil 
carrying  an  electric  current  is  due  to  the  excitation  in  the 

metal  of  small  electrical  circuits.  But  the  conception 

though  a  very  fruitful  one,  long  remained  without  a  trace 

of  experimental  proof,  though  after  the  discovery  of  the 

electron,  it  was  generally  believed  that  these  molecular 

currents  may  be  due  to  the  rotational  motion  of  free 

electrons  within  the  metal.  It  is  easily  seen  that  if  in  the 

process  of  magnetisation,  a  number  of  electrons  be  set  into 

rotatory  motion,  then  these  will  impart  to  the  metal  itself 

a  turning  couple.  The  experiment  is  a  rather  difficult  one, 

and  many  physicists  tried  in  vain  to  observe  the  effect. 

But  in  collaboration  with  de  Haas,  Einstein  planned  and 

successfully  carried  out  this  experiment,  and  proved  the 

essential  correctness  of  Ampere's  views. 

Einstein's  studies  on  Relativity  were  commenced  in  the 
year  1905,  and  has  been  continued  up  to  the  present  time. 

The  first  paper  in  the  present  collection  forms  Einstein's 
first  great  contribution  to  the  Principle  of  Special 

Relativity.  We  have  recounted  in  the  introduction  how  out 

of  the  chaos  and  disorder  into  which  the  electrodynamics 

and  optics  of  moving  bodies  had  fallen  previous  to  1895, 
Lorentz,  Einstein  and  Minkowski  have  succeeded  in 

building  up  a  consistent,  and  fruitful  new  theory  of  Time 

and  Space. 

But  Einstein  was  not  satisfied  with  the  study  of  the 

special  problem  of  Relativity  for  uniform  motion,  but 
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tried,  in  a  series  of  papers  beginiiin^  from  1011,  to  extend 

it  to  the  case  of  non-uniform  motion.  The  last  paper  in 

the  present  collection  is  a  translation  of  a  comprehensive 

article  which  he  contributed  to  the  Annalen  der  Physik  in 

1916  on  this  subject,  and  gives,  in  his  own  words,  the 

Principles  of  Generalized  Relativity.  The  triumphs  of 

this  theory  are  now  matters  of  public  knowledge. 

Einstein  is  now  only  -45,  and  it  is  to  be  hoped  that 
science  will  continue  to  be  enriched,  for  a  long  time  to 

come,  with  further  achievements  of  his  genius. 





INTRODUCTION. 

A*  the  present  time,  different  opinions  are  being  held 

about  the  fundamental  equations  of  Electro-dynamics  for 

moving  bodies.  The  Hertzian1  forms  must  be  given  up, 
for  it  has  appeared  that  they  are  contrary  to  many  experi 
mental  results. 

In  1895  H.  A.  Lorentz-  published  his  theory  of  optical 
and  electrical  phenomena  in  moving  bodies;  this  theory 

uas  based  upon  the  atomistic  conception  (vorstellung)  of 

electricity,  and  on  account  of  its  great  success  appears  to 

have  justified  the  bold  hypotheses,  by  which  it  has  been 

ushered  into  existence.  In  his  theory,  Lorentz  proceeds 

from  certain  equations,  which  must  hold  at  every  point  of 

"Ather";  then  by  forming  the  average  values  over  "  Phy 

sically  infinitely  small  "  regions,  which  however  contain 
large  numbers  of  electrons,  the  equations  for  electro-mag 

netic  processes  in  moving  bodies  can  be  successfully  built 

up. 

In  particular,  Lorentz's  theory  gives  a  gobd  account  of 
the  non-exietence  of  relative  motion  of  the  earth  and  the 

lumiiiiferous  "  Ather  ''  ;  it  shows  that  this  fact  is  intimately 
connected  with  the  covarianee  of  the  original  equations 

when  certain  simultaneous  transformations  of  the  space  and 

time  co-ordinates  are  effected;  these  transformations  have 

therefore  obtained  from  II.  l'»iueare;  the  name  of  Lbrentz- 
transformations.  The  covarjance  of  the-e  fundamental 

equations,  when  subjected  to  the  Lomit/-traiisfunnation 

is  a  purely  mathematical  fart  i.e.  not  based  on  any  physi- 
cal  considerations;  1  will  call  this  the  Theorem  of  Rela 

tivity  ;  this  theorem  re-t>  essentially  on  the  form  of  the 

1  n,i.    No*   l.  •-'  Note  •_'.  3   Vide  Nute  ::. 
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differential  equations  for  the  propagation  of  waves  with 

the  velocity  of  light. 

Now  without  recognising  any  hypothesis  about  the  con 

nection  between  "  Ather  "  and  matter,  we  can  expect  these 
mathematically  evident  theorems  to  have  their  consequences 

so  far  extended — that  thereby  even  those  laws  of  ponder 
able  media  which  are  yet  unknown  may  anyhow  possess 

this  covariance  when  subjected  to  a  Lorentz-transformation ; 

by  saying  this,  we  do  not  indeed  express  an  opinion,  but 

rather  a  conviction, — and  this  conviction  I  may  be  permit 
ted  to  call  the  Postulate  of  Relativity.  The  position  of 

affairs  here  is  almost  the  same  as  when  the  Principle  of 

Conservation  of  Energy  was  poslutated  in  cases,  where  the 

corresponding  forms  of  energy  were  unknown. 

Now  if  hereafter,  we  succeed  in  maintaining  this 

covariance  as  a  definite  connection  between  pure  and  simple 

observable  phenomena  in  moving  bodies,  the  definite  con 

nection  may  be  styled  '  the  Principle  of  Relativity.' 
These  differentiations  seem  to  me  to  be  necessary  for 

enabling  us  to  characterise  the  present  day  position  of  the 

electro-dynamics  for  moving  bodies. 

H.  A.  Lorentz1  has  found  out  the"  Relativity  theorem" 
and  has  created  the  Relativity-postulate  as  a  hypothesis 
that  electrons  and  matter  suffer  contractions  in  consequence 

of  their  motion  according  to  a  certain  law. 

A.  Einstein2  has  brought  out  the  point  very  clearly, 
that  this  postulate  is  not  an  artificial  hypothesis  but  is 

rather  a  new  way  of  comprehending  the  time-concept 
which  is  forced  upon  us  by  observation  of  natural  pheno 
mena. 

The  Principle  of  Relativity  has  not  yet  been  formu 

lated  for  electro-dynamics  of  moving  bodies  in  the  sense 

i   F«cieNote4,  *  Note  6. 
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characterized  by  me.  "In  the  present  essay,  while  formu 
lating  this  principle,  I  shall  obtain  the  fundamental  equa- 

\\«\\<  for  moving  bodies  in  a  sense  which  is  uniquely  deter 

mined  by  this  principle. 
But  it  will  be  shown  that  none  of  the  forms  hitherto 

assumed  for  these  equations  can  exactly  fit  in  with  this 

principle.* 
We  would  at  first  expect  that  the  fundamental  equa 

tions  which  are  assumed  by  Lorentz  for  moving  bodies 

would  correspond  to  the  Relativity  Principle.  But  it  will 

be  shown  that  this  is  not  the  case  for  the  general  equations 

which  Lorentz  has  for  any  possible,  and  also  for  magnetic 

bodies  ;  but  this  is  approximately  the  case  (if  neglect  the 

square  of  the  velocity  of  matter  in  comparison  to  the 

velocity  of  light)  for  those  equations  which  Lorentz  here 

after  infers  for  non-magnetic  bodies.  But  this  latter 

accordance  with  the  Relativity  Principle  is  due  to  the  fact 

that  the  condition  of  non-magnetisation  has  been  formula 

ted  in  a  way  not  corresponding  to  the  Relativity  Principle; 

therefore  the  accordance  is  due  to  the  fortuitous  compensa 

tion  of  two  contradictions  to  the  Relalivity-Postulate. 

But  meanwhile  enunciation  of  the  Principle  in  a  rigid 

manner  does  not  signify  any  contradiction  to  the  hypotheses 

of  Lorentz's  molecular  theory,  but  it  shall  become  clear  that 
the  assumption  of  the  contraction  of  the  electron  in 

Lorentz's  theory  must  be  introduced  at  an  earlier  stage 
than  Lorentz  has  actually  dene. 

In  an  appendix,  I  have  gone  into  discussion  of  the 

position  of  Classical  Mechanics  with  respect  to  the 

Relativity  Postulate.  Any  easily  perceivable  modification 

of  mechanics  for  satisfying  the  requirements  of  the 

Relativity  theory  would  hardly  afford  any  noticeable 

difference  in  observable  processes  ;  but  would  lead  to  very 

*  See  notes  on  §  8  aud  10. 
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surprising  consequences.  By  laying  down  tin1  Relativity- 
Postulate  from  the  outset,  sufficient  means  have  been 

created  for  deducing  henceforth  the  complete  series  of 

Laws  of  Mechanics  from  the  principle  of  conservation  of 

Energy  alone  (the  form  of  the  Energy  being  given  in 

explicit  foiras).  -,.  + 

NOTATIONS. 

Let  a  rectangular  system  (s,  //,  ~,  /,)•  of  reference  be 
given  in  space  and  time.  The  unit  of  time  shall  be  chosen 

in  such  a  manner  with  reference  to  the  nnit  of  length  that 

the  velocity  of  light  in  space  becomes  unity. 

Although  I  would  prefer  not  to  change  the  notations 

used  by  Lorent/,  it  appears  important  to  me  to  use  a 

different  selection  of  symbols,  for  thereby  certain  homo 

geneity  will  appear  from  the  very  beginning.  I  shall 

denote  the  vector  electric  force  by  E,  the  magnetic 

induction  by  M,  the  electric  induction  by  c  and  the 

magnetic  force  bv  MI,  so  that  (E,  M,  e,  ;#)  are  used  instead 

of  Lorentz's  (E,  B,  D,  H)  respectively. 

I  shall  further  make  use  of  complex  magnitudes  in  a 

way  which  is  not  yet  current  in  physical  investigations, 

?'.  £.,  instead  of  operating  with  (/),  I  shall  operate  with  (/'/), 
where  /denotes  \/-*-\.  If  now  instead  of  (./•,  //,  z,  it),  I 
use  the  method  of  writing  with  indices,  certain  essential 
circumstances  will  come  into  evidence  ;  on  this  will  be 

based  a  general  use  of  the  suffixss  (1,  2,  3,  1).  The 

advantage  of  this  method  will  be,  as  I  expressly  emphasize 

here,  tha^  we  shall  have  to  handle  symbols  which  have 

apparently  a  purely  real  appearance  ;  we  can  however  at 

any  moment  pass  to  real  equations  if  it  is  understood  that 

of  thr  symlbols  with  indices,  such  ones  as  have  the  suffix 

4  only  once,  denote  imaginary  quantities,  while  those 
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which  have  not  at  all  the  suffix  4,  or  have  it  twice  denote 

real  quantities. 

An  individual  system  of  values  of  (.*•,  y,  ~,  /)  /.  e.,  of 

(•ri  >r-.'  '3  ̂ '4)  sna^  b«  called  a  space-time  point. 

Further  let  «  denote  the  velocity  vector  of  matter,  c  the 

dielectric  constant,  //.  the  magnetic  permeability,  <r  the 
conductivity  of  matter,  while  p  denotes  the  density  of 

electricity  in  space,  and  .v  the  vector  of  "Electric  Current" 
which  we  shall  some  across  in  §7  and  §8. 
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PART  I  §  2. 

THE  LIMITING  CASE. 

The  Fundamental  Equations  for  Atlier. 

By  using  the  electron  theory,  Lorentz  in  his  above 

mentioned  essay  traces  the  Laws  of  Electro-dynamics  of 
Ponderable  Bodies  to  still  simpler  laws.  Let  us  now  adhere 

to  these  simpler  laws,  whereby  we  require  that  for  the 

limitting  case  «=-*,  /A=-/,(T  =  O,  they  should  constitute  the 

laws  for  ponderable  bodies.  In  this  ideal  limitting  case 

e=l,  /*=!,  <r=o,  E  will  be  equal  to  e,  and  M  to  m.  At 

every  space  time  point  (t,  y,  ~,  f)  we  shall  have  the 

equations* 

(i)     Curl  m—    gr=/>u 

(ii)     div  e=  p 

(iii)     Curlr     +-.*?   =  0 

(iv)     div  m  =  o 

I    shall    now   write    (.rt  xy  .r3  .r4)  for  (.r,  y,  z,  t)    and 

0>i>P2>  Ps>  Pi)  for 

(Pu,,puy,pur,  ip) 

i.e.  the  components  of  the  convection  current  pu,  and  the 

electric  density  multiplied  by  \/—l. 

Further  1  shall  wriU- 

./23<./3  ltfl  2>  /I  4>./2  l'./34' 

for 

m,,  mv,  m.,  — ie,,  — ie  ,  —  ie.. 

i.e.,  the  components  of  m  and  (  —  i.e.}  along  the  three  axes; 

now  *f  we  take  any  two  indices  (h.  k)  out  of  the  series 
(1,2,3,4),  /„=-/.., 

*  See  note  9. 
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Therefore 

./ ,1  -.'  =  ~~./2  s>  f\  3  =  ~"./s  i >  y  2 1  =  *vi  •-• 

/4  1  =   ~V  I  4>  ./ 4  4  =  ~/2  4>  ./ 4  U  =  ~~.A  4 

Then  the    three   equations    comprised    in   (i),    and    the 

equation  (ii)  multiplied  by  i  becomes 

&i  x  8A? 8xj  8x2 

*/_4J.  8/4_2  8/i3 

8x,  8x2  8xn 

On  the  other  hand,  the  three  equations  comprised  in  (iii) 

and  the  (iv)  equation  multiplied  by  (/)  becomes 

^4        ,      8/4.  «/t.      . 

8x,  8xa  '    8x4 

(B) 

.         . 

Sx,       "     8x2       •    8x3 
By  means  of  this  method  of    writing  \ve  at   once  notice 

the  perfect  symmetry  of  the  1st  as  well  as  the  2nd    system 

of    equations   as    regards    permutation    with    the  indices. 

(1,  2,  3,  4). 

It  is  well-known  that  by  writing  the  equations  f)  to 

iv)  in  the  symbol  of  vector  calculus,  we  at  once  set  in 

evidence  an  invariance  (or  rather  a  (covariance)  of  the 
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system  of  equations  A)  as  well  as  of  B),  when  the  co-ordinate 
system  is  rotated  through  a  certain  amount  round  the 

null-point.  For  example,  if  we  take  a  rotation  of  the 

axes  round  the  z-axis.  through  an  amount  <f>,  keeping 

e,  m  fixed  in  space,  and  introduce  new  variables  .r/,  .ra'  .r3' 
.r/  instead  of  ̂ (  .r2  .r,s  .r4,  where 

;r,  =  ;r,  cos  <£  +  .r2  sn  <>,  .r2  =  —  .r,  sn<£  +  .r2 

,r'3  =.r3.r'4  =  «4,  and  introduce  magnitudes  p'  t,  p'  2,  p'3  p'4, 

where  p,'  =  p,  cos  ̂ >  +  pL,  sin^>,  p2'  =  —  p,  sin<^>  +  p2  cos«/> 

aud/".,o,     ......    /'8  4,'  where 

/'•H=/t4   COS  'A    +/M    sil1    */»'/'  2  4    =     "/I  4    SU1   ̂    + 

/24    COS   ̂ ,./'34=/:Mi 

/,,  =  -fkh  (h  I  k  =  1,2,3,4). 

then  out  of  the  equations  (A)  would  follow  a  corres 

ponding  system  of  dashed  equations  (A')  composed  of  the 
newly  introduced  dashed  magnitudes. 

So  upon  the  ground  of  symmetry  alone  of  the  equa 

tions  (A)  and  (B)  concerning  the  suffices  (1,  2,  3,  4),  the 

theorem  of  Relativity,  which  was  found  out  by  Lorentz, 

follows  without  any  calculation  at  all. 

I  will  denote  by  i'\j/  a  purely  imaginary  magnitude, 
and  consider  the  substitution 

*i'  =  *i>  •''•/=  *>>>  •'  a'  =  ̂ 3  COR  lVr  +  -"4  H'n  T'^  (1) 

*/  =   —  x3  sin  ity  +  ,r4  cos  ?'i//, 

Putting  -  /  tan  ̂   =  T      =  ̂   ̂  =     lo^      _ 
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\Vi;  shall  liavo  cos  i\f/  = 

where  —  i  <  q  <  i,    and    v/l~?a  *s  always  to    be    taken 
with  the  positive  sign. 

Let  us  now  write  x  ,  =  /,  ,7/2  —y'i  x'  3  saz')  x'  i—it'  (3) 
then  the  substitution   1)  takes  the  form 

,, *=•  ••>  y=y,z=-      —>t=-      =,  (4) 
v/l-^          -x/l-f* 

the  coofficients  being  essentially  real. 

If  now  in  the  above-mentioned  rotation  round  the 

Z-axis,  we  replace  1,  2,  3,  4  throughout  by  3,  4,  1,  2,  and 

<£  by  t'^,  we  at  once  perceive  that  simultaneously,  new 
magnitudes  p'j,  p'2,  p'3,  p'4,  where 

(P/i=Pn  P'»=P2>  P  s=Ps  cos  e't/'  +  p4  sin  t^r,  p'4  = 
—  P3  sin  ty  +  p4  cos  t^r), 

and/'  12  .../34,  where 

/'4i=/4i  cos  ty  +/13  sin  7>,/13=  -/41  sin  »V  +/t  g 

COS  f  «A,  /'  3  4  =/3  4  ,  /  3  2  =/3  o  COS  ̂   +  /4  2  «in  t  ̂,  /'  4  2  = 

~/32  Sin  ̂   +  /42  COS  ̂   /I  2  =/18i  /**  =  -/*»t 

must  be  introduced.  Then  the  systems  of  equations  in 

(A)  and  (B)  are  transformed  into  equations  (A'),  and  (B'), 
the  new  equations  being  obtained  by  simply  dashing  the 
old  set. 

All  these  equations  can  be  written  in  purely  real  figures, 
and  we  can  then  formulate  the  last  result  as  follows. 

If  the  real  transformations  4)  are  taken,  and  .i/  y  z'  t' 
be  takes  as  a  new  frame  of  reference,  then  we  shall  have 

,KX      »  r-qrn.+l-]
 (5)  P=P  -     ,  P»«  =P 

p«.=pu., 
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e,—  qm,         ,  ,         oe.+m, 
(6)   e,'    = 

—  q*  '  VI—       ' 

Then  we  have  for  these  newly  introduced  vectors  u',  e  , 

m'  (with  components  ux',  ur',  u/  ;  ex',  <?/,  e/  •  mx',  my', 

«»/),  and  the  quantity  p  a  series  of  equations  I'),  II'), 

III'),  IV)  which  are  obtained  from  I),  II),  III),  IV)  by 
simply  dashing  the  symbols. 

We  remark  here  that  e,—qmy,  ev+qm,  are  components 
of  the  vector  e+  [ym],  where  v  is  a  vector  in  the  direction 

of  the  positive  Z-axis,  and  i  v  \=q,  and  [vm~\  is  the  vector 
product  of  v  and  m  ;  similarly  —qet  +  m,,mf+ge,  are  the 

components  of  the  vector  m—[ve]. 

The  equations  6)  and  7),  as  they  stand  in  pairs,  can  be 

expressed  as. 

e,'  +  t'mV  =  (e.  +«"•»)  cos  i\ff  +  (ey+tmy)  sin  i\[/, 

ey'  +  im'y'  =  —  (e.+t'm,)  sin  i\j/  +  (ey+»my)  cos  ty, 
e,'  -\-irn'  ,'~e'  t  -}-imt. 

If  <£  denotes  any  other  real  angle,  we  can  form  the 

following  combinations  :  — 

t'mY)  cos.  <t>+(es/"  +  im']/')  sin  </> 

cos.  (^  +  ̂ )  +  (ey+tmy)  sin  (<f>  +  i\j/), 

')  sin  </>  +  (e'/  +  t'm'/)  cos.  <^> 

sin  (<t>  +  i^)  +  (eif  +im,  )  cos.  (<^  +     ). 

SPECIAL  LORENTZ  TRANSFORMATION. 

The  rl  3  which  is  played  by  the  Z-axis  in  the  transfor 

mation  (4)  can  easily  be  transferred  to  any  other  axis 
when  the  system  of  axes  are  subjected  to  a  transformation 
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about  this  last  axis.  So  we  came  to  a  more  general 

law  : — 

Let  v  be  a  vector  with  the  components  vx,  vy,  v,, 

and  let  \  v  \  =q<l.  By  »  we  shall  denote  any  vector 

which  is  perpendicular  to  v,  and  by  rv,  r-^  we  shall  denote 

components  of  r  in  direction  of  ~y  and  v. 

Instead  of  (.r,  y,  z,  t),  new  magnetudes  (x  y'  z  t'}  will 
be  introduced  in  the  following  way.  If  for  the  sake  of 

shortness,  r  is  written  for  the  vector  with  the  components 

(x,  y,  2)  in  the  first  system  of  reference,  r'  for  the  same 

vector  with  the  components  (x  y'  z'}  in  the  second  system 
of  reference,  then  for  the  direction  of  y,  we  have 

T^r 

and  for  the  perpendicular  direction  v, 

(11)     r'T=r7 —  ar.+t 

and  further  (12)  t'=     /   . 
v  I  —  q* 

The  notations  (/-?,  r'r)  are  to  be  understood  in  the  sense 

that  with  the  directions  v,  and  every  direction  y~  perpendi 
cular  to  v  in  the  system  (.r,  y,  z)  are  always  associated 

the  directions  with  the  same  direction  cosines  in  the  system 

(*'  y,  O- 
A  transformation  which  is  accomplished  by  means  of 

(10),  (11),  (12)  with  the  condition  Q<q<\  will  be  called 

a  special  Lorentz-transformation.  We  shall  call  v  the 

vector,  the  direction  of  v  the  axis,  and  the  magnitude 
of  v  the  moment  of  this  transformation. 

If  further  p  and  the  vectors  u  ,  e ' ,  pt',  in  the  system 
(x'y'z'}  are  so  defined  that, 
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further 

(15)  (e  +  «V)  ,  =  (e  +  m)  —  i  [u,  (e  +  /m)]  ,.  . 

Then  it  follows  that  the  equations  I),  II),  III),  IV)  are 

transformed  into  the  corresponding  system  with  dashes. 

The  solution  of  the  equations  (10),  (11),  (12)  leads  to 

(16)  rc 
—  q2  —  q 

Now  we  shall  make  a  very  important  observation 

about  the  vectors  u  and  u'.  We  can  again  introduce 

the  indices  1,  2,  3,  4,  so  that  we  write  (.*',',  #2',  vz'  ,  #/) 

instead  of  (.c',  t/',  ;',  it')  and  p/,  p2',  p3',  p^'  instead  of 

(p1  u',',  p  u'y',  p'  u',',  ip. 

Like  the  rotation  round  the  Z-axis,  the  transformation 

(4),  and  more  generally  the  transformations  (10),  (11), 

(12),  are  also  linear  transformations  with  the  determiuant 

+  1,  so  that 

(17)  .T1a+.r22+.tsa+.«42  i.  e.  x*  +  y*+z*-t\ 

is  transformed  into 

*!"  +.'.',"  +  .''s''  +  'O1''  e-  x'*+y'*+z'2-t'*. 

On  the  basis  of  the  equations   (13),    (14),    we    shall    have 

(pl*+pS+P>*+P<*)=P*(l-ut>,-uv\-u,*,)=p*(l-u*) 

transformed  into  ps(l  —  MS)  or  in  other  words, 

(18)  p  A/l^T* 

is  an  invariant  in  a  Lorentz-transformation. 

If  we  divide  (pl,  ps,  ps,  p4)  by  this  magnitude,  we  obtain 

the  four  values  f(»1,  wa,  o>,,  o>4)  =      .    .          (u,,  uy,  «,,  i) 
VI  _  M* 

so  that  a)12+u)a*+w31+to4f  =  —  1. 

It  is  apparent  that  these  four  values,  are  determined 

by  the  vector  u  and  inversely  the  vector  //  of  magnitude 
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<i  follows  from  the  -1  values  o^,  oja,  o>3,  w.t  ;  where 

(<•>„  01,,  wj  are  real,  —  *w4  real  and  positive  and  condition 

(ID)  is  fulfilled. 

The  meaning  of  (<•>!,<•»,,  o»3,  <•>,)  here  is,  that   they    are 

the  ratios  of  <Arlf  ilr,,  d  •  „,  rfx4  to 

(20)    V_(d.,:l 

The  differentials  denoting  the  displaeements  of  matter 

occupying  the  spacetimc  point  (.clf  .••„  ̂ 3,  .i-J  to  the 

adjacent  space-time  point. 

After  the  Lorentz-transfornation  is  accomplished  the 

vococity  of  matter  in  the  ne\v  system  of  reference  for  the 

same  space-time  point  (.</  y  -J  t')  is  the  vector  n'  with  the 
dx'     <ly'     dz'      dl' 

ratios  -^-,,  -J,,  ̂ p,  ̂ p,  as  components. 

Now  it   is   quite    apparent   that   the   system  of  values 

.('= 

is  transformed  into  the  values 

*i'  =  "i'i  -I'a^Wi'.  »3'  =  W3'5  *4'  =  o)4' 

in  virtue  of  the  Lorentz-transformation  (10),  (11),  (12). 

The  dashed  system  has  got  the  same  meaning  for  the 

velocity  //'  after  the  transformation  as  the  first  system 
of  values  lias  got  for  n  before  transformation. 

If  in  particular  the  vector  v  of  the  special  Lorentz- 

transformation  be  equal  to  the  velecity  vector  u  of  matter  at 

tin-  space-time  point  (.e,,  a?,,  r3,  x4)  then  it  follows  out  of 

(10\  (11),  (12)  that 

<o1'=:o,  0)a'  =  0,  ti)3'  =  0,  o>4'=l 

Under  these  circumstances  therefore,  the  corresponding 

space-time  point  has  the  velocity  v'  =  u  after  the  trans 
formation,  it  is  as  if  we  transform  to  rest.  We  may  call 

the  invariant  f>  ̂ /  \  —  M«  as  the  re.-t-dcn-ity  of  Mlectricity.* 
*  See  Note. 
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§  5.     SPACE-TIME  VECTORS. 

Of  the  hf,  and  2nd  kind. 

If  we  take  the  principal  result  of  the  Lorentz  transfor 

mation  together  with  the  fact  that  ;he  system  (A)  as  well 

as  the  system  (B)  is  covariant  with  respect  to  a  rotation 

of  the  coordinate-system  round  the  null  point,  we  obtain 
the  general  relativity  theorem.  In  order  to  make  the 

facts  easi.ly  comprehensible,  it  may  be  more  convenient  to 

define  a  series  of  expressions,  for  the  purpose  of  expressing 
the  ideas  in  a  concise  form,  while  on  the  other  hand 

I  shall  adhere  to  the  practice  of  using  complex  magni 

tudes,  in  order  to  render  certain  symmetries  quite  evident. 

Let  us  take  a  linear  homogeneous  transformation, 

a  n        a ,  55        a  t  3        a , 

a21     «22     «23     a2 

a31     «33     a33     a3 

_   __       La41     «42     a43     «4 

the  Determinant  of  the  matrix  is  +1,  all  co-efficients  with 

out  the  index  4  occurring  once  are  real,  while  a4 ,,  a42, 

a4 3,  are  purely  imaginary,  but  a4 4  is  real  and  >o,  and 

a^2  +  #22  +  ''32  +^42  transforms  into  ̂ ,'2  +#2'2  +'C3'2 

+  #4'2.  The  operation  shall  be  called  a  general  Lorentz 
transformation. 

If  we  put  xl'  =  ,ct  ,r 2 '=//',  .'-3 '  =  z',  ,c4'  =  it',  then 
immediately  there  occurs  a  homogeneous  linear  transfor 

mation  of  (*,  y,  z,  f)  to  (r'}  y',  z',  t')  with  essentially  real 
co-efficients,  whereby  the  aggregrate  —  .c2  —  y*  —  ;2  +t2 

transforms  into  —  v'2  —  y'~*  —  z'-  +t'*,  and  to  every  such 
system  of  valut^  £,  y,  :, ./  with  a  positive  I,  for  which 

this  aggregate  o,  there  always  corresponds  a  positive  t' ; 
This    notation,    whirli   is  due  to  Dr.  C.   E.   Cullis  of    the  Calcutta 

University,  has  been  used  throughout  instead  of  Minkowski's  notation, 
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this    last  is   quite   evident   from    the   continuity    of    the 

aggregate  .r,  y,  z,  t. 

The  last  vertical  column    of   co-efficients   has  to   fulfil, 

the  condition  :!2)  al  42  +a.J48  +  tf34a  -f-a442  =  l. 
If  ,i =  fl34  =  o,  then  «44  =  i,  and    the    Lorentz 

transformation    reduces    to  a  simple  rotation  of    the  spatial 

co-ordinate  system  round  the  world-point. 

If   0l4,    as4,    «S4    are    not    all    zoro,  and    if    we    put 

«i4  :  fl»4  :  «34  :  «44  =  v,  :  v»  -v,:i 

Ou  the  other  hand,  with  every  set  of  value  of 

ai4>  rt»4>  a34»  fl44  which  in  this  way  fulfil  the  condition 

I'l)  with  real  values  of  v,,  vv,  v,,  we  can  construct  the 
special  Lorentz  transformation  (.16)  with  (a^  4,  «24,  034,a44) 

as  the  last  vertical  column,  —  and  then  every  Lorentz- 
transformatiou  with  the  same  last  vertical  column 

(al4,  a24,  a34,  a44)  can  be  supposed  to  be  composed  of 

the  special  Lor(?ntz-transformation,  and  a  rotation  of  the 

spatial  co-ordinate  system  round  the  null-point. 

The  totality  of  all  Lorentz-Transformations  forms  a 

group.  Under  a  space-time  vector  of  the  1st  kind  shall 
be  understood  a  system  of  four  magnitudes  Pi,p8,ps,  p4) 
with  the  condition  that  in  case  of  a  Lorentz-transformation 

it  is  to  be  replaced  by  the  set  p,',  p2',  p3',  p4'),  where 

thes;  are  tlii!  v.ilue;  oP  .'•/,  c./,  .-.,',  .e/),  obtaiael  by 
sab^tituting  (p,,  p.},  p.,,  p  )  for  (-,,  xj}  .»-3,  .«-4)  in  the 
expression  (il). 

Besides  the  time-space  vector  of  the  1st  kind  (xlt  o;2, 

*3>  -''4)  we  shall  also  make  use  of  another  space-time  vector 
of  the  first  kind  (y,,  //.,,.  //3,  y4),  and  let  us  form  the  linear 
combination 

-*«  y.) 

—  «*  ys) 
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with  six  coefficients  /„.,—/,  v.  Let  us  remark  that  in  the 

vectorial  method  of  writing,  this  can  be  constructed  out  of 
the  four  vectors. 

•Ci,as*,#a  ;  yi,y.,ys  ;/»3./si./n  ;  /i*.  A*'  A*    and 
the  constants  ,«4  and  y4,  at  the  same  time  it  is  symmetrical 

with  regard  the  indices  (1,  2,  3,  4). 

If  we  subject  (ajlf  .r,,  ,«3,  ,r4)  and  (yt,  ya,  ya,  y4)  simul 

taneously  to  the  Lorentz  transformation  f21),  the  combina 

tion  (23)  is  changed  to. 

(24)    /„'  (,-,'  y,'-.r,'  y.)  +/sl  (a,'    <//-../  ys)  +  /,  , 

whei'e  the  coefficients  /83',  /3  /,  /x  2',  /14',  /,4',  /84',    depend 
solely  on  (/8S  /94)  and  the  coefficients  alt  ...a+4. 

We  shall  define  a  space-time  Vector  of  the    2nd     kind 

as  a  system  of  six-magnitudes  /2  3,t/s  t  ......  /34,  with  the 

condition  that  when  subjected  to  a  Lorentz  transformation, 

it  is  changed  to  a  new  system  y^./  ......  /"34J...  which    satis 
fies  the  connection  between  (23)  and  (24). 

I  enunciate  in  the  following  manner  the  general 

theorem  of  relativity  corresponding  to  the  equations  (I)  — 

(iv),  —  which  are  the  fundamental  equations  for  Ather. 

If  ,--,  i/,  z,  it  (space  co-ordinates,  and  time  if)  is  sub 

jected  to  a  Lorentz  transformation,  and  at  the  same  time 

(/)/*,,  pity,  pit',,  ip]  (convection-current,  and  charge  density 
pi)  is  transformed  as  a  space  time  vector  of  the  I  st  kind, 

further  (mx,  mf,  )»..-,  —  '*',,  —  ie,,  —  if.)  (magnetic  force, 

and  electric  induction  x  (  —  /)  is  transformed  as  a  space 

time  vector  of  the  :!nd  kind,  then  the  system  of  equations 

(1),  (II),  and  the  system  of  c  |inti  >  is  (III),  (IV)  trans 

forms  into  essentially  corresponding  relations  between  the 

corresponding  magnitudes  newly  introduced  into  the 

system. 
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These  facts  can  be  more  concisely  expressed  iu  these 

words  :  the  system  of  equations  (I,  and  II)  as  well  as  the 

system  of  equations  (III)  (IV)  are  covariant  in  all  eases 

of  Lorentz-transformation,  where  (pu,  ip)  is  to  be  trans 

formed  as  a  space  time  vector  of  the  1st  kind,  (ni  —  ie)  is 
to  be  treated  as  a  vector  of  the  2nd  kind,  or  more 

significantly,  — 

(pit,  ip)  is  a  space  time  vector  of  the  1st  kind,  (m  —  ie)* 
is  a  space-time  vector  of  the  2nd  kind. 

-I  shall  add  a  fe  v  more  remarks  here  in  order  to  elucidate 

the  conception  of  space-time  vector  of  the  2nd  kind. 

Clearly,  the  following  are  in  variants  for  such  a  vector  when 

subjected  to  a  group  of  Lorentz  transformation. 

A  space-time  vector  of  the  second  kind  (m  —  ie),  where 

(m,  and  e)  are  real  magnitudes,  may  be  called  singular, 

when  the  scalar  square  (in  —  ie)*=0)  ie  ms—et=oi  and  at 
the  >;une  time  (m  e)=o,  ie  the  vector  wand  e  are  equal  and 
perpendicular  to  each  other;  when  such  is  the  case,  these 

two  properties  remain  conserved  for  the  space-time  vector 

oi  the  2nd  kind  in  every  Lorentz-transformation. 

If  the  space-time  vector  of  the  2nd  kind  is  not 

singular,  we  rotate  the  spacial  co-ordinate  system  in  such 

a  manner  that  the  vector-product  \me\  coincides  with 

the  Z-axis,  i.e.  mjt)  =  o,  e,-=o.  Then 

Therefore  (i-t  +i  m,,  )j(et  +i  cx)  is  different  from  +i, 
and  we  can  therefore  define  a  complex  argument  <j>  +  i$) 
in  such  a  manner  that 

= 
'„  +t  m, 

Vide  Note. 
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If  then,  by  referring  back  to  equations  (9),  we  carry  out 

the  transformation  (1)  through  the  angle  <A,  and  a  subsequent 

rotation  round  the  Z-axis  through  the  angle  <£,  we  perform  a 

Lorentz-transformation  at  the  end  of  which  mv  =  o,  ev=o, 
and  therefore  m  and  e  shall  both  coincide  with  the  new 

Z-axis.  Then  by  means  of  the  invariants  m"2  —  e* ,  (me) 
the  final  values  of  these  vectors,  whether  they  are  of  the 

same  or  of  opposite  directions,  or  whether  one  of  them  is 

equal  to  zero,  would  be  at  once  settled. 
% 

§  CONCEPT  OF  TIME. 

By  the  Lorentz  transformation,  we  are  allowed  to  effect 

certain  changes  of  the  time  parameter.  In  consequence 

of  this  fact,  it  is  no  longer  permissible  to  speak  of  the 

absolute  simultaneity  of  two  events.  The  ordinary  idea 

of  simultaneity  rather  presupposes  that  six  independent 

parameters,  which  are  evidently  required  for  defining  a 

system  of  space  and  time  axes,  are  somehow  reduced  to 
three.  Since  we  are  accustomed  to  consider  that  these 

limitations  represent  in  a  unique  way  the  actual  facts 

very  approximately,  we  maintain  that  the  simultaneity  of 

two  events  exists  of  themselves.*  In  fact,  the  following 
considerations  will  prove  conclusive. 

Let  a  reference  system  (x,y,  z,  t)  for  space  time  points 

(events)  be  somehow  known.  Now  if  a  space  point  A 

(x,,y0,  O  at  the  time  ta  be  compared  with  a  space 

point  P  (.f,  y,  z)  at  the  time  /,  and  if  the  difference  of 

time  t—tt,  (let  t>  I.)  be  less  than  the  length  A  P  i.e.  less 

than  the  time  required  for  the  propogation  of  light  from 

*  Just  as  beings  which  aro  confined  within  a  narrow  region 
surrounding  a  point  on  a  shperical  surface,  may  fall  into  the  error  that 

a  sphere  is  a  geometric  figure  in  which  ouo  diameter  is  particularly 
distinguished  from  the  rest. 
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A  to  P,  and  if  q=  -      °    <  1,  then   by  a  special    Lorentz A  i 

transformation,  in  which  A  P  is  taken  as  the  axis,  and  which 

has  the  moment*/,  we  can  introduce  a  time  parameter  t' ,  which 

(see  equation  11,  12,  §  4)  has  got  the  same  value  t'  ==o  for 
both  space-time  points  (A,  t0),  and  P,  t).  So  the  two 

events  can  now  be  comprehended  to  be  simultaneous. 

Further,  let  us  take  at  the  same  time  t0  =  0,  two 

different  space-points  A,  B,  or  three  space-points  (A,  B,  C) 

which  are  not  in  the  same  space-line,  and  compare 

therewith  a  space  point  P,  which  is  outside  the  line  A  B, 

or  the  plane  A  B  C,  at  another  time  t,  and  let  the  time 

difference  t  —  tt  (t  >  t0]  be  less  than  the  time  which  light 
requires  for  propogation  from  the  line  A  B,  or  the  plane 

A  B  C)  to  P.  Let  q  be  the  quotient  of  (t  —  to)  by  the 
second  time.  Then  if  a  Lorentz  transformation  is  taken 

in  which  the  perpendicular  from  P  on  A  B,  or  from  P  on 

the  plane  A  B  C  is  the  axis,  and  q  is  the  moment,  then 

all  the  three  (or  four)  events  (A,  I.),  [B,  t0),  (C,  t.)  and 
(P,  t)  are  simultaneous. 

If  four  space-points,  which  do  not  lie  in  one  plane  are 

conceived  to  be  at  the  same  time  t,,  then  it  is  no  longer  per 

missible  to  make  a  change  of  the  time  parameter  by  a  Lorentz 

— transformation,  without  at  the  same  time  destroying  the 
character  of  the  simultaneity  of  these  four  space  points. 

To  the  mathematician,  accustomed  on  the  one  hand  to 

the  methods  of  treatment  of  the  poly-dimensional 

manifold,  and  on  the  other  hand  to  the  conceptual  figures 

of  the  so-called  non-Euclidean  Geometry,  there  can  be  no 

difficulty  in  adopting  this  concept  of  time  to  the  application 

of  the  Lorentz-transformation.  The  paper  of  Kinstein  which 
has  been  cited  in  the  Introduction,  has  succeeded  to  some 

extent  in  presenting  the  nature  of  the  transformation 

from  the  physical  standpoint. 
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PART  II.     ELECTRO-MAGNETIC 
PHENOMENA. 

§  7.     FUNDAMENTAL  EQUATIONS  FOR  BODIES 
AT  REST. 

After  these  preparatory  works,  which  have  been  first 

developed  on  account  of  the  small  amount  of  mathematics 

involved  in  the  limitting  case  «=!,/*=  1,  a-  =  o,  let 

us  turn  to  the  electro-magnatic  phenomena  in  matter. 

We  look  for  those  relations  which  make  it  possible  for 

us         when    proper    fundamental    data  are  given  —  to 
obtain  the  following  quantities  at  every  place  and  time, 

and  therefore  at  every  space-time  point  as  functions  of 

(.r,  y,  z,  t] : — the  vector  of  the  electric  force  E,  the 
magnetic  induction  M,  the  electrical  induction  <?,  the 

magnetic  force  m,  the  electrical  space-density  p,  the 
electric  current  s  (whose  relation  hereafter  to  the  conduc 

tion  current  is  known  by  the  manner  in  which  conduc 

tivity  occurs  in  the  process),  and  lastly  the  vector  u,  the 

velocity  of  matter. 

The  relations  in  question  can  be  divided  into  two 
classes. 

Firstly — those  equations,  which, — when  v,  the  velocity 

of  matter  is  given  as  a  function  of  (.<-,  y,  r,  (,], — lead  us  to 

a  knowledge  of  other  magnitude  as  functions  of  .,-,  y,  r,  t 

— I  shall  call  this  first  class  of  equations  the  fundamental 

equations — 

Secondly,  the  expressions  for  the  ponderomotive  force, 

which,  by  the  application  of  the  Laws  of  Mechanics,  gives 
us  further  information  about  the  vector  u  as  functions  of 

*,  y,  *,  0- 

For  the  case  of  bodies  at  rest,  i.e.  when  u  (x,  y,  :,  t) 

=  o  the  theories  of  Maxwell  (Heaviside,  Hertz)  and 
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Loreoti  lead  to    the  same    fundamental    equations.     They 

are  ; — 

•  (1)  The    Differential    Equations: — which     contain     no 
constant  referring  to  matter  : — 

(i)   Curl  m  —  ~-    -  C,  (iV)   div  e  =>. 

(in)   Curl  E  +         -  =  o,  (ir)   Div  M  =  o. 

(2)  Further  relations,  which  characterise  the  influence 

of  existing  matter  for  the  most  important  case  to  which 

we  limit  ourselves  i.e.  for  isotopic  bodies  ;  —  they  are  com 
prised  in  the  equations 

(V)  e  =  e  E,  M  =  urn,  C  =  <rE. 

where  «  =  dielectric  constant,  /j.  =  magnetic  permeability, 

a-  =  the  conductivity  of  matter,  all  given  as  function  of 

•cj  >  ">  ̂j  *  is  h«re  the  conduction  current. 

By  employing  a  modified  form  of  writing,  I  shall  now 

cause  a  latent  symmetry  in  these  equations  to  appear. 

I  put,  as  in  the  previous  work, 

and  write  *»,  st,  53,  *4  for  C,,  Cy,  C,    V  _  1  p. 

further  /,,,/,,,/,  ,,/,,,/„,,/,. 

form,,m,,m,  —  t  (e.,  ey,  c.  ), 

andFls,F31,F19,F14,F,.,FS4 

for  M.,  M,,  M,,  -  i  (E,,  Ey,  E.) 

lastly  we  shall  have  the  relation  fkk  =  —,./**,  Fkll  =  —F)tk, 

(tin-  letter/,  F  shall  denote  the  field,  *  the  (i.e.  current). 
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Then  the  fundamental  Equations  can  be  written  as 

a/sl 

3/t, 
3.c4 

and  the  equations  (3)  and  (4),  are 3F,.    . 

a..,        a  3 

=  0 

8F,t    . 

3*,     '  a,4 

+  ̂ ^-8  + 

3F,, 

=  0 

=  0 

=  o 

§  8.    THE  FUNDAMENTAL  EQUATIONS. 

"We  are  now  in  a  position  to  establish  in  a  unique  way 
the  fundamental  equations  for  bodies  moving  in  any  man 

ner  by  means  of  these  three  axioms  exclusively. 

The  first  Axion  shall  be, — 

When  a  detached  region*  of  matter  is  at  rest  at  any 
moment,  therefore  the  vector  "  is  zero,  for  a  system 

*  Einzelne  stelle  der  Materie. 
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(j-,  y,  :,  /) — the  neighbourhood  may  be  supposed  to  be 

in  motion  in  any  possible  manner,  then  for  the  space- 

time  point  x,  y,  z,  tt  the  samo  relations  (A)  (B)  (V)  which 
hold  in  the  case  when  all  matter  is  at  rest,  shall  also 

hold  between  p,  the  vectors  C,  e,  m,  M,  E  and  their  differ 

entials  with  respect  to  x,  y,  z,  t.  The  second  axiom  shall 

be:— 

Every  velocity  of  matter  is  <1,  smaller  than  the  velo 

city  of  propogation  of  light.* 

The  fundamental  equations  are  of  such  a  kind  that 

when  (f,  y,  zt  it)  are  subjected  to  a  Lorentz  transformation 

and  thereby  (m  —  ie)  and  (M—iE)  are  transformed  into 

space-time  vectors  of  the  second  kind,  (C,  ip)  as  a  space-time 

vector  of  the  1st  kind,  the  equations  are  transformed  into 

essentially  identical  forms  involving  the  transformed 

magnitudes. 

Shortly  I  can  signify  the  third  axiom  as : — 

(/#,  — 1<?),  and  (W,  —  iE]  are  space-time  vectors  of  the 

second  kind,  (C,  ip)  is  a  space-time  vector  of  the  first  kind. 

This  axiom  I  call  the  Principle  of  Relativity. 

In  fact  thes^  three  axioms  lead  us  from  the  previously 

mentioned  fundamental  equations  for  bodies  at  rest  to  the 

equations  for  moving  bodies  in  an  unambiguous  way. 

According  to  the  second  axiom,  the  magnitude  of  the 

velocity  vector  |  it  \  is  <1  at  any  space-time  point.  In 

consequence,  we  can  always  write,  instead  of  the  vector  u, 

the  following  set  of  four  allied  quantities 

11  •          -   -        u'  -       u» 

x/n^T' — 11 » *  Vido  Note. 
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with  the  relation 

(27)    Wl2+W22+w,2+W42=  —    | 

From  what  has  been  said  at  the  end  of  §  4,  it  is  clear 

that  in  the  case  of  a  Lorent/.-transformation,  this  set 

behaves  like  a  space-time  vector  of  the  1st  kind. 

Let  us  now  iix  our  attention  on  a  certain  point  (r,  y,  z) 

of  matter  at  a  certain  time  (/•).  If  at  this  space-time 

point  u  =  o,  then  we  have  at  once  for  this  point  the  equa 

tions  (A),  (5)  (V)  of  §7.  It  u  t  o,  then  there  exists 

according  to  16),  in  case  |  n  \  <1,  a  special  Lorentz-trans- 
formation,  whose  vector  v  is  equal  to  this  vector  u  (.r,  y,  z, 

t),  and  we  pass  on  to  a  new  system  of  reference  (?'  y'  z  I') 
in  accordance  with  this  transformation.  Therefore  for 

the  space-time  point  considered,  there  arises  as  in  §  4, 

the  new  values  28)  0)^  =  0,  o/2  =  0,  u/3:=0,  u/4=f, 

therefore  the  new  velocity  vector  o/  =  o,  the  space-time 

point  is  as  if  transformed  to  rest.  Now  according  to  the 

third  axiom  the  system  of  equations  for  the  transformed 

point  (.r'  /  z  I)  involves  the  newly  introduced  magnitude 

(n  p',  C',  e',  m',  E' ,  M'}  and  their  differential  quotients 

with  respect  to  (x',  y' ,  z',  t'}  in  the  same  manner  as  the 
original  equations  for  the  point  (x,  y,  z,  t).  But  according 

to  the  first  axiom,  when  u'  =  o,  these  equations  must  be 
exactly  equivalent  to 

(1)  the    differential    equations    (^'),    (#'),    which    are 
obtained    from    the    equations  (.-/),  (/?)  by  simply  dashing 
the  symbols  in  (./)  and  (B). 

(2)  and  the  equations 

(V')     <?'  =  cA",   M'  =  pm',   C'  =  a/-' 

where  e,  ̂ ,  o-  are  the  dielectric  constant,  magnetic  permea 

bility,  and  conductivity  for  the  system  (./  //'  :'  t'}  i.e.  in 
the  space-time  point  (t  y,  z  t)  of  matter. 
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Now  let  us  return,  by  means  of  the-  reciprocal  Lorentz- 

trausl'onnation  to  (lie  original  variables  (.»-,  y,  :,  /),  and  the 

magnitudes  (/',  p,  C,  <•,  ///,  A',  I/)  and  (he  equations,  which 
we  then  obtain  from  the  last  mentioned,  will  be  the  funda 

mental  equations  sought  by  us  for  the  moving  bodies. 

Now  from  §  4,  and  §  0,  it  is  to  be  seen  that  the  equa 

tions  .-/),  as  well  as  the  equations  //)  are  covariant  for  a 

Lorentz-transformation,  />.  the  equations,  which  we  obtain 

backwards  from  A'}  B'},  must  be  exactly  of  the  same  form 
am  the  equations  ./)  and  />'),  as  we  take  them  for  bodies 
at  rest.  \Ve  have  therefore  as  the  first  result  : — 

The  differential  equations  expressing  the  fundamental 

equations  of  electrodynamics  for  moving  bodie?,  when 

written  in  p  and  the  vectors  C,  >%  ///,  K,  M,  are  exactly  of 

the  same  form  as  the  equations  for  moving  bodies.  The 

velocity  of  matter  does  not  enter  in  these  equations.  In 

the  rectorial  wav  of  writing,  we  have 

curl  ni  —       ' '  =  C,,  II)  div  f= n  i  I 

III     VMH-!    K    -f    90M  =  o  lV)divM=o /  U  / 

The  velocity  of  matter  occut>  only  in  the  anxilliary 

equations  which  characterise  the  influence  of  matter  mi  the 

basis  of  their  characteristic  constants  e,  /<,  <r.  Let  us  now 

transform  these  aiixilliary  equations   \  ')   into   the  original 
co-ordinates  ( • ,  //,:,  and  /.) 

Acconlin^  to  formula  15)  in  ̂   I,  the  (-omponent  of  >•' 
in  the  direction  of  tin-  vector  /'  i-  the  same  us  llial  n|' 

(?+[H  tn']),  the  component  of  /;/'  is  th"  same  as  that  of 
«/  —  [//  r],  but  for  the  perpendicular  direction  r>,  the  com 

ponents  of  f' ,  ni  are  the  same  as  those  of  (••+[>  ///i)and  (/// 

—  [UP],    multiplied    by    /  .      On  the   other  hand     !•'/ 
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and  M'  shall  stand  to  E  +  ["M,],  and  M  —  [«Kj  in  the 

same  relation  us  <•'  aud  ///'  to  <!'+[«>#],  and  m  —  (//>•). 

From  the  relation  c>/  =  «  E',  the  following-  equations  i'uliow 

(C)  r+[W//,]=c(E+[//M]), 

and  from  the  relation  M'=//.  «/,  we  have 

(D)  M-[ttE]=/t(/y/-[/^]), 

For  the  components  in  the  directions  perpendicular 

to  /',  and  to  each  other,  the  equations  are  to  be  multiplied 

by  v'fll^: 

Then  the  following  equations  follow  from  the  transfer- 

mation  equations  (12),  10),  (11)  in  $  4,  when  we  replace 

q,  rt,  r-r-,  t,  r',.,  r'r,  ('  by  |  n  \  ,  C,,,  C,,  p,  C'.  C'v,  p 

,-  C    +         ,       CM- 

In  cunsideration  of  the  manner  in  which  o-  enters  into 
these  relations,  it  will  be  convenient  to  call  the  vector 

C—  p  /'  with  the  components  C,—  p  |  /'  |  in  the  direction  of 

/',  and  C',,  in  the  directions  T>  [lerpendicular  to  H  the 
"Convection  current.''  This  last  vanishes  for  <r=o. 

\\'c  remark  that  for  «=1,  //-=!  the  ecjuations  r'  =  E', 
/«'  =  M'  immediately  lead  to  the  equations  /  —  E,  //i  =  M 
bv  means  of  a  rcciprofid  Liu'cnt/.-transformatiun  with  —  it 

as  vector;  and  for  o-=o,  the  equation  C'  =  o  leads  to  C=p  i'  ; 
that  the  fundamental  equations  of  Ather  discussed  in  § 

:i  becomes  in  fact  the  limitting  case  of  the  equations 

obtained  here  with  «  =  1,  /*  =  !,  ̂ —o. 
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§1).    THE  FUNDAMENTAL  EQUATIONS  IN 

LORENTZ'S  THEORY. 

Let  us  now  see  how  far  the  fundamental  equations 

assumed  by  Lorentz  correspond  to  the  Relativity  postulate, 

as  defined  in  sjS.  In  the  article  on  Electron-theory  (Ency, 
Math.,  Wiss.,  Bd.  V.  2,  Art  14)  Lorentz  has  given  the 

fundamental  equations  for  any  possible,  even  magnetised 

bodies  (see  there  page  200,  Eq"  XXX',  formula  (11)  on 
page  78  of  the  same  (part). 

(Ul»'")  Curl   (H-[//E])  =  J+    —  )  +  /'divD 

-curl  OD]. 

(1")  div  !)  =  /. 

(IV")  curl  E  =  —  -^   ,     Div  13  =  0  (V) 

Then  for  moving  non-magnetised  bodies,  Lorentz  pubs 

(page  :2:!3,  :i)  ̂ =  1,  B  =  H,  and  in  addition  to  that  takes 

account  of  the  occurrence  of  the  di-eleetric  constant  e,  and 

conductivity  o-  according  to  equations 

Lort'iit/'s  1-],  1),  II  ;irt-  here  denoted  i>v  E,  M,  r,  m 
while  J  denotes  the  :-onduction  cuiTeiit. 

The  three  last  equations  which  have  been  just  cited 

here  coincide  with  eq"  (II),  (III),  (IV),  the  first  equation 
would  be,  if  J  i>  identified  with  C,  —  /'/;  (the  current  being 
y.ero  for  (/  =  (), 

(2U)  Curl  i  II  -(.,K;  j  =('f->  -curl[«l)i, 
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and  thus  comes  out  to  he  in  a  different  form  than  (1)  here. 

Therefore  for  magnetised  bodies,  Lorentz's  equations  do  not 
correspond  to  the  Relnti  vity  Principle. 

On  the  other  hand,  tlie  form  corresponding  to  the 

relativity  principle,  for  the  condition  of  non  -magnetisation 

is  to  be  taken  out  of  (D)  in  ̂ S,  with  i>.=  \,  not  as  B  =  H, 

as  Lorentz  takes,  but  as  (30)  B  —  [>!)]  =  H  —  [»D] 

(M  —  [«E]=/;/  —  [«<*]  Now  by  putting  11  =  B,  the  d.flW- 

ential  equation  ('-•')  is  transformed  into  the  same  form  as 

e<j"  (1)  liere  when  ;//  —  [//,»]  =M  —  [«K].  'Pherefore  it  so 
happens  that  by  a  compensation  of  two  contradictions  to 

the  relativity  principle,  the  differential  equations  of  Lorentz 

for  moving  non-magnetised  bodies  at  last  agree  with  the 

relat.ivit  v  postulate. 

If  \ve  make  use  of  (-'HI)  for  non-magnetic  bodies,  and 

pat  accordingly  Il  =  IJ-r-[",  (D  —  E)],  then  in  conse(|iience 
of  (C)  in  §8, 

(e_])  (K  +  r,,,B;)  =  0_E+r,,.  [;/,D—  E]], 

is.  for  the  direction  of  n 

and  for  a  perpendicular  direct  ion  fi, 

i.r.  it  coincides  with     L^rent/'s    assumjition,   if  we  neglect 

/'  -  in  comparison  to  1  . 

Also  to  the  same  order  of  approximation,  Lorentz's 

form  for  J  corresponds  to  the  conditions  imposed  by  the 

relativity  principle  ;  eomp.  (K)  ̂   8]—  that  the  components 

of  J,,;  -I  ftW  eijual  to  the  components  of  <r(E-f  [n  B]) 

multiplied  by    ̂fZ^i    or   ̂ j^TT     respectively. 
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vjlO.        I'YNDAMKNTAL    EQUATIONS    OF    E.    COHN. 

K.  Cohn  assumes  the  following  fundamental  equations. 

(31)  Curl  (M-f  0  E])  =  '^  +  u  div.  E  +  .T 

—  Curl  [E—  (//.  M)]=  —  _  +  n  div.  M. 
ill 

(32)  J  =  ,r  E,  =  cE-|>  M],  M  =  /*(y//+[>  E.]) 

where  I1}  M  are  the  electric  and    magnetic  field    intensities 
(forces),    E,    M    are    the  electric  and  magnetic  polarisation 

(induction).     The  equations  also    permit    the   existence   of 

true    magnetism ;  if    we    do    not    take    into    account  this 

eoiHiderat ion,  div.  M.  is  to  be  put  =  ft. 

An  objection  to  this  svstem  of  equations  is  that 

according  to  these,  for  «=  1,  /i  =1,  the  vectors  force  and 

induction  do  not  coincide.  If  in  the  equations,  we  conceive 

E  and  M  and  not  E-(t*.  M),  and  M+[T  E]  as  electric 
and  magnetic  forces,  and  with  a  glance  to  this  we 

substitute  for  E,  M,  E,  M,  div.  E,  the  symbols  c,  M,  E 

-fCU  M],  >//  —  [/'<"],  p,  then  the  differential  equations 
transform  to  our  equations,  and  the  conditions  (32) 
transform  into 

J  =  «r(E+0  M]) 

,+  [*,  (*-[**])]  =«(E+[«M]) 

then  in  fart  the  equations  of  (John  become  the  same  as 

those  required  by  the  relativity  principle,  if  errors  of  the 

order  •'  are  neglected  in  comparison  to  1. 

It  may  be  mentioned  here  that  the  equations  of  Hertz 

become  the  same  as  those  of  Cohn,  if  the  auxiliary 
conditions  are 
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§11.     TYPICAL  HKPKKSKXTATIONS  OF  THK 

EUND  A MENTAL  EQUATIONS. 

In  the  statement  of  the  fundamental  equations,  our 

leading  idea  had  been  that  they  should  retain  a  eovariance 

of  form,  when  subjected  to  a  group  of  Lorentz-trans- 
formations.  Xo\v  we  have  to  deal  with  ponoeromotive 

reactions  and  energy  in  the  electro-magnetic  field.  Here 

from  the  very  first  there  can  be  no  doubt  that,  the 

settlement  of  this  question  is  in  some  way  connected  with 

the  simplest  forms  which  can  be  given  to  (he  fundamental 

equations,  satisfying  the  conditions  of  covarianee.  In 
order  to  arrive  at  such  forms,  I  shall  first  of  all  puf  the 

fundamental  equations  in  a  typical  form  which  brings  out 

clearly  their  covariaucein  case  of  a  Lorentz-transformation. 
Here  I  am  using  a  method  of  calculation,  which  enables  us 

to  deal  in  a  simple  manner  with  the  space-time  vectors  of 
the  1st,  and  2ud  kind,  and  of  which  the  rules,  as  far  as 

required  are  given  below. 

A  system  of    magnitudes    iikk  formed  into    the  matrix 

arranged  in  /;  horizontal  rows,  and  //  vertical  columns  is 

called  a  ft  xq  series-matrix,  and  will  be  denoted  by  the 
letter  A. 

If    all    the    quantities     </,.,<     are    multiplied   by   (\    the 

resulting  matrix  will  be  denoted  by  CA. 

It'  the  roles  of  the  horizontal  rows  and  vertical   columns 

be  interchanged,  we   obtain    a    yx;;    series    matrix,    which 
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will  In-  known  ;i>  the  transposed    matrix    oi  A,  aiul  will   be 

»!fiu>1etl  1'V  A. 

It'  we  have  a  second  jj  x  ij  series  matrix  B, 

tl-.en  A  +  B  shall  denote  the  j>  x  y  series  matrix  whose 

members  are  a,,  k -\-bhk. 

2°     If  we  have  two  matrices 

A=|aM   a 

ki   a 
where  the  number  of  horizontal  rows  of  B,  is  equal  to  the 

number  of  vertical  columns  of  A,  then  by  AB,  the  product 
of  the  matrics  A  and  B,  will  be  denoted  the  matrix 

•     '••'.'  i 

,;;f  •  I 

these  elements  bein^r  formed  l>y  eombinat  ion  of  the 

hori/onlal  rows  of  A  with  the  vertical  columns  of  B.  For 

such  a  point,  the  associative  law  (AB)  S  =  A(HS)  holds, 

where  S  is  a  third  matrix  which  has  -ot  u  many  hori/ontal 

rows  as  B  (or  A  l>)  has  -^ot  vortical  columns. 

For  the  transposed  matrix  of  C=BA,  we  have  C  =  BA 
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3".     We  shall  have  principally  to    deal    with    matrir-rs 
with  at    most    four    vertical    columns    and    for    horizontal 

As  a  unit  matrix  (in  equations  they  will  be  known  for 

the  sake  of  shortness  as  the  matrix  1)  will  be  denoted  the 

following  matrix  (4  x  4  series)  with  the  elements. 

(:H)         e,,       eI2       e18        c14      =   I         1     0     o     0 

0100 

00    1    01 

0     0     0     1  ! 

For  a  4x4  series-matrix,  Det  A  shall  denote  the 
determinant  formed  of  the  4x4  elements  of  the  matrix. 

If  det  A  +  o,  then  corresponding  to  A  there  is  a  reciprocal 

matrix,  which  we  may  denote  by  A'1  so  that  A-1A  =  1 
A  matrix 

./»i/s>°      y.,, 

/, ,  /,  a  /, , 

in  which  the  elements  fulfil    the    relation    //,  <   =  —  /»«,is 
called  an  alternating  matrix.     Those     relations     say     that 

the  transposed  matrix     f    =  —  ./.     Then    by    /*    will    be 

the  il/'df,  alternating  matrix 

(35) 

;  /,, 
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/>.  We  shall  have  a  4x4  series  matrix  in  which  all  the 

elements  except  those  on  the  diagonal  from  left  up  to 

right  clown  are  zero,  and  the  elements  in  this  diagonal 

agree  with  each  other,  and  are  each  equal  to  the  above 

mentioned  combination  in  (36). 

The  determinant  of /is  therefore  the    square    of    the 

| 
combination,  by  Det  /we  shall  denote]the  expression 

4°.     A  linear  transformation 

which  is  accomplished  by  the  matrix 

A=|   a,,.  a,2,  als,  a,+ 

«n,  «    2>  "a  si  a*4 

will  be  denoted  as  the  transformation  A 

By  the  transformation  A,  the  expression 

.,•»-}-    ,»+  ,i«4-     l  is  changed   into    the    quadrat  ie 

for  ///      ̂ 'i/,/    ••/  ."/, 

where  aAi=alt  «,*+«„/.     asA+usAa3l   +«+*«4lt. 

are  the  members  of  Jl    1-x  !•    series    matrix    which   is    the 

produrt  of  A  A,  the  transposed  matrix  of  A  into  A.     li   \\\ 

the  tranrformation,  the  rxpn-sion   i-  cliaiiged  to 

inu-  t   h:ue  A  A  =  1. 
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A  has  to  correspond  to  the  following  relition,  if  trans 

formation  (38)  is  to  be  a  Lorentz-transformation.  For  the 

determinant  of  A)  it  follows  out  of  (39)  that,  (Det  A)2  = 
1,  or  Det  A=  +  l. 

From  the  condition  (39)  we  obtain 

i.e.  the  reciprocal  matrix  of  A  is  equivalent  to  the  trans 

posed  matrix  of  A. 

For  A  as  Lorentz  transformation,  we  have  further 

Det  A=  +1,  the  quantities  involving  the  index  4  once  in 

the  subscript  are  purely  imaginary,  the  other  co-efficients 
are  real,  and  /*44>0. 

5°.  A  space  time  vector  of  the  first  kind*  which  s 
represented  by  the  1x4  series  matrix, 

(41)         *=  |  *,   *s  *,,  *4  | 

is  to  be  replaced  by  ft  A  in  case  of  a  Lorentz  transformation 

A.  i.e.  -f'=  |  •?/  •?.>'  *../  */  |  =  |  f> i  .'2  *s  •%  |  A; 

A  space-time  vector  of  the  2nd  kindt  with  components  /*2  3 . . . 

/'34  shall  be  represented  by  the  alternating  matrix 

/,,  /42  -A,  o 

and  is  to  be  replaced  by  A"1  /'A  in  case  of  a  Lorentx. 
tr;insformation  [see  the  rules  in  §  5  ('23)  (24)].  Therefore 
referring  to  the  expression  (37),  we  have  the  identity 

Det^  (A/A)  =  DetA.  Det*/  Therefore  Det V be 
comes  an  invariant  in  the  case  of  a  Lorentz  transformation 

[•eeeq.  (:Jfi)  Sec.  §  5]. 

*  riiJr  nut..  13. 

t  T'l'f/c  note  14. 
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Looking  back  to  (-M),  we  have  i'or  the  dual  matrix 

(A./1*A)(A-'/A)  =  A-1/VA-Det"  /.  A-1A  =  Dofi  / 

from  which  it  is  to  he  seen  that  the  dual  matrix/*  behaves 

exactly  like  the  primary  matrix/,  and  is  therefore  a  space 

time  vector  of  the  II  kind;  /*  is  therefore  kiiown  as  the 

dual  space-time  vector  of/  with  components  (/',  4>/34,/34>)» 
OWso/ij). 

0.*  If  w  and  ,v  are  two  space-time  rectors  of  the  1st  kind 

then  by  w  ,1  (as  well  as  by  -v  //> )  will  be  understood  tin- 

combination  (1-3)  w i  sv  +10,,  s.j-Mfg  iV3  +  #>4  ,v,. 

In  case  of  a  Loreiitz  transformation  A,  since  (wA)  (A-v) 

'  =  10  s,  this  expression  is  invariant. — If  tr  x  =  o,  then  w 
and  s  are  perpendicular  to  each  other. 

Two  space-time  rectors  of  the  lirst  kind  (10,  .v)  gives  us 
a  2  x  1  .series  matrix 

W,  IV.)  10.,  10: 

Then  it  follows  immediately  that  the  system  of  six 

magnitudes  (14)  /«._,  .v3  —  to.j  *._,,  w3  -v,  —  wl  -v3,  10 ,  s.,—io*  s,, 

behaves  in  case  of  a  Lorentz-transformation  as  a  space-time 
vector  of  the  II  kind.  The  vector  of  the  second  kind  with 

the  components  (It)  are  denoted  by  [w,  .v].  We  see  easily 

that  Del"  [«?,  • v]=o.  The  dual  vector  of  ["Vs']  shall  be 

written  as  [  /'•,  ,v].* 

If  //;  is  a  space-time  vector  of  the  1st  kind,  /'  of  the 
.-eeond  kind,  /'•/  si^nilies  a  1  x  1  series  matrix.  In  case 

of  a  Ijoivnt/.-traiisfonnation  A,  f  is  changed  into  tr'  =  icA, 

/'into  /"  =  \~l  /'A, — therefore  /'•'/"  become>  =(/'-AA~'/' 

A)  =  /'•/'  \  /.'.  "'/'is  transformed  as  a  >pace-time  vector  of 
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the  1st  kind.*  We  can  verify,  when  w  is  a  space-time  vector 

of  the  1st  kind,  /'  of  the  2nd  kind,  the  important  identity 

(45)  O,  wf  }  +  O,  »/*] *  =  (m  w  )  f. 

The  sum  of  the  two  space  time  vectors  of  the  second  kind 
on  the  left  side  is  to  be  understood  in  the  sense  of  the 

addition  of  two  alternating  matrices. 

For  example,  for  (al=o,  o;a=:o.  w3=o,  ta.t=i, 

<«/=     I    */*!»      */*„,      *!/4S,      °    I       ;       <«/*  =     I    #3  •'     */!»»     #21  >     °    I 

|>  •  eo/J  =0,  o,  o,  /.,  t ,  /,  2 ,  /t  ,   ;    [w  •  a>/*]*  =  o,  o,  o,  /,  2,fi;>J.2l. 

The  fact  that  in  this  special  case,  the  relation  is  satisfied, 

suffices  to  establish  the  theorem  (45)  generally,  for  this 
relation  has  a  covariant  character  in  case  of  a  LoreNitz 

transformation,  and  is  homogeneous  in  (wj,  wa,  o)3.  wt). 

After  these  preparatory  works  let  us  engage  ourselves 

with  the  equations  (C,)  (D,)  (E)  by  means  which  the  constants 

e  /x,  a  will  be  introduced. 
Instead  cf  the  space  vector  u,  the  velocity  of  matter,  we 

shall  introduce  the  space-time  vector  of  the  first  kind  to  with 
the  components. 

(40)   where  w  1  2  +  w2  a  +  co3  2  +  w 
and—  iw.t  >0. 

By  F  and  /  shall  be  understood  (lie    space    time    vectors 

of  tin-  second  kind  M  —  i\'].  n>  —  ic. 

In  4>  =  wF.  \vu  have  a  space  time  vector  of   the    first   kind 
with  components 

3.,  .ln> 

4jl+w.F^ 
I'idc  note  15. 
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The  first  three  quantities  (<£,,  <£a,  <£,)  are  the  components 

of  the  space-vector  IrL+JJi'JH  . 

^1-1T»~ 
and   further   <£4  =  -IfiLjEL   . 

^1—  w" 

Because  F  is  an  alternating  matrix, 

(49)      O}*  =  w1^»1  +wa4>2-|-<jJ34>3  +oj44>t  r=o. 

i.e.  &  is  perpendicular  to  the  vector  w  ;  we  can  also 

write  4>t=i  [wx4>j  +wy4>a  +w.4>3]. 

I  shall  call  the  space-time  vector  <I>  of  the  first  kind  as 
the  Electric  Rest  Force* 

Relations  analogous  to  those  holding  between  —  wF, 

E,  M,  Uphold  amongst  —  w/,  v,  m,  u,  and  in  particular  —  otf 
is  normal  to  w.  The  relation  (C)  can  be  written  as 

{  C  }          o)/=e<oF. 

The  expression  (w/)  gives  four  components,  but  the 
fourth  can  be  derived  from  the  first  three. 

Let  us  now  form  the  time-space  vector  1st  kind 

^  =  iw/*,  whose  components  are  0 

*!=-*'(  »J*,*  +"3/4,  +«*»/„)          1 

*a  =  -''('",/,.,+          «•!/*•  *«4/»») 
*.=-»(«l/.*+«Ji,      +",/12)    I 
**  =  —  *(*»!/•  •+»•/!»  +*»|/g,  )        J 

Of  these,  thu  first  three  «!',.  >!/,.  »J/S)  .irc  the  .i\  //.  \ 

i'(iinpo;ients  of  the  space-vector  51)  "i  —  ('"') 

and  further  (52;  ft   =     '/'nil/ 
/ 

Fide  note  16. 
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Among  these  there  is  tlie  relation 

(53)     t1>V  —  (J>ltyi+M2ty.2+  0)^.1+  c>4*4=o 

which  can  also  be  written  as  4'4=:i  (uxfyl  +  "y^a  ~J""»^'s)' 

The  vector  *  is  perpendicular  to  «  ;  we  can  call  it  the 

\Iay>ietic  rest-force. 

Relations  analogous  to  Ihese  hold  amon^  the  quantities 

iwF*,  M,  E,  u  and  Relation  (D)  can  be  replaced  by  the 
formula 

{  D  }  -o,F*=/4w/*. 
We  can  use  the  relations  (C)  and  (D)  to  calculate 

F  and  f  from  <J>  and  *  we  have 

WF  -  _  $.  up*  =  _  i'^i/.  ,,,/=  _  €<i,,  „,;•  *--/*. 

and  applying  the  relation  (45)  and  (46),  we  have 

F=     [CD.  *J  +  z>[o».  *]*  55) 

/=     e[<o.  *]  +  *[«.*]*  5G;. 

i.e.     F12=(Wl$1-wi!*1)  +  .>[w/l't-on*3]!  etc. 

/la=e(wI*a-wa*l)  +  A  [o)3*4-w4*3].  etc. 

Let    us    uo\v   consider    the   space-time    vector   of    the 

second  kind  [$  *],  with  the  components 

*8*3-*3*2,  *,*1-*1*3,  ^^j,-*,*,     -, 

4>ixi/i_4>4^/l,  <J>2\J/4_4)^\I>2.  cj>3»l/+—  <j>t\i/3     J 

Then  the  corresponding  space-time  vector  of  the  tir-t 

kind  w[*,  *]  vanishes  identically  owing  to  c.(juation>  ;>) 

and  33) 

for 

Let  us  now  take  the  vector  of  the  1st  kind 

the 

.  etc. 
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Then  In'  applying  1'11'(1  (^-"O'  wo  'l^ 

(58)     [*.*]  =  i  [u>n]» 

i>.   ̂ j^,—  <P.2>I'1=«(wr,O+—  o>+$2.,)  etc. 

Tho  vector  fi  fulfils  the  relation 

(which  we  can  write  as  n+=t  (to^Qj  +ojyQ2  +a>2Q'3) 
and  n  is  also  normal  (o  o>.     In  case  w=o.    • 

we  have  *4=o,  *.v=o,  n4=o.  and 

*i    *a   * 

I  shall  call  fi.  which  is  a  space-time  vector  1st  kind  the 

Rest- Ray.  • 

As  for  the  relation  E),  which  introduces  the  conductivity  a- 

we  have  — u>S=:  —  (wi*i  +Was2  "r^s**  +W4-S'.«.) 

This  expression  reives  us   the   rest-density   of  electricity 

(see  §8  and  §4). 

Then  r»l)=s+(t,w)« 

represents  a  space-time  vector  of  the  1st  kind,  which  since 

axi>=  — 1,  is  normal  to  «,>,  and  which  I  may  call  the  rest- 

cnrrent.  Let  us  now  conceive  of  the  lirst  three  component 

uf  this  vector  as  the  (./•  —  //  —  c)  co-ordinates  of  the  -pace- 

vector,  then  the  component  in  the  direction  ui'  //  is 

C  -    I  "  I  P    =  c»  ~    I  u  I  P  —     -1" 
Vll^  A/1— «»  l-«" 

and  the  comiionent  in  a  per])endicular  direction  is  ('.,  —  Ju. 

This  space-\ector    i-    conneeted     with    the    space-veefur 

.1  —  C  —  fiit,    which    we    denoted    in     ̂     as  the 
current. 
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Now  by  comparing  with  <f>=  --o>F,  the  relation  (li!)  cm 
be  brought  into  the  form 

This  formula  contains  four  equations,  of  which  the 

fourth  follows  from  the  first  three,  since  this  is  a  space- 

time  vector  which  is  perpendicular  to  w. 

Lastly,  we  shall  transform  the  differential  equations 

(A)  and  (B)  into  a  typical  form. 

§12.     THE  DIFFERENTIAL  OPERATOR  LOR. 

A  4x4  series  matrix  62)  S=    S,,  S12  S1S  S14    =  |  S,A  | 

SS1  Sa,  S2S  S,4 

S41  S42  S4;t  S44 

with  the  condition  that  in  case  of  a  Lorentz  transformation 

it  is  to  be  replaced  by  ASA,  may  be  called  a  space-time 

matrix  of  the  II  kind.  We  have  examples  of  this  in  : — 

1)  the   alternating   matrix  f,   which    corresponds  to    the 

space-time  vector  of  the  II  kind, — 

2)  the  product  f  F  of  two  such  matrices,  for  by  a  transfor 

mation  A,  it  is  replaced  by  (A-1/A-A~IFA)=A~I/F  A, 
M)  further  when  (MI.  uis.  cua,  co4)   and  (ni;  O2,  «s,  U4)    aiv 

l  \vn  spare-time  veotiu-s  of  llie  1st  kind,  the  4x4  matrix  with 
tlie  element  SAA.  =wAnA, 

lastly  in  a  multiple  L  of  the  unit  matrix  of  4x4  series 

in  which  all  the  elements  in  the  principal  diagonal  are 

equal  to  L,  and  the  rest  are  xero. 

\Yc  shall  have  to  do  constantly  with  functions  of  the 

F  pace-time  point  (.r,  >/,  :,  if],  and  we  may  with  advantage 
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employ    the    Ixl   series    matrix,    formed    of    differential 

symbols, — 

a    a    a    a or (63) a    a    a    a 
3       dy    3: 

For  this  matrix  T  shall  use  the  shortened  from  "  lor."* 

Then  if  S  is,  as  in  (62),    a    space-time    matrix    of    the 

II    kind,   by   lor    S'    will    be    understood    the  1  x  4  series 
matrix 

I  K,     K,     K<     K.  | 

where  K4  =      ̂ L*  +   *i*    + 

When  by  a  Lorentz  transformation  A,   a   new    reference 

system  (.K\  .<:',  x'  s  ,i-4)  is  introduced,  we  can  use  the  operator 

lor'= 
^     a      a      a 
8."/    8.V",'    8*,'    a-,' 

Then  S  is  transformed   to    S'=A  S  A=  |  S'»j  |  ,   so  bj 
lor  'S'  is  meant  the  1x4  series  matrix,  whose  element  are 

*ri    aS|4.oSjt.as.tj  i  a  s  *  * 

Now  foi1  the  differentiation  of   any  function   of    (x  y  t  f) 

a         a    a  ,  ,   a    a  , we  have  the  rule 
ST   .     —       ^          -^    ,  "T    j?         W   i 

a .»•*         3',  3 .••*      3 .--,  3    * 

t  a  3-''3  ,    a      3«« 
+  3.8  87T'       3^     3A 

3                3  L    3    ,        ,    3 

3  •  i  3  •*'  $  3  • 

so  that,  we  have  symbolically  lor'  =  lor  A. 

Vide  note  17. 
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Therefore  it  follows  that 

lor  'S'  =  lor  (A  A-'  SA)  =  (lor  S)A. 

i.e.,    lor  S  behaves  like  a    space-time    vector   of    the    first 
kind. 

If  L  is  a  multiple  of  the  unit  matrix,  then  by  lor  L  will 
be  denoted  the  matrix  with  the  elements 

8L      6L      6L      6L 

8-«i     8.I-,     9.t  3     9** 

If  #  is  a  space-time  vector  of  the  1st  kind,  then 

lori    =»il+»£.+|il    +    »i... 
8*1        9-c2        80,        o  «-4 

In  case  of  a  Lorentz  transformation  A,  we  have 

lor  V=lor  A.     As = lor  *. 

i.e.,  lor  *  is  an  invariant  in  a  Lorentz-transformation. 

In  all  these  operations  the  operator  lor  plays  the  part 

of  a  space-time  vector  of  the  first  kind. 

If /' represents  a  space-time  vector  of  the  second  kind, 
—  lor  f  denotes  a  space-time  vector  of  the  first  kind  with 

the  components 

8/i,       a/,,   ,    8/l4 
a —      +      a          +   "a — O  •  ••,  O     ,  0.'  + 

a/  ,  +._8At.. 

9-f.-,  9-(i, a* 

3.'    +    l^'  +8Z' a/., 
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So  the  system  of  differential  equations  (A)  can  be 

expressed  in  the  concise  form 

{A}  lor/=-», 

and  the  system  (B)  can  be  expressed  in  the  form 

{B}  log  F*  =  U. 

Referring  back  to  the  definition  (H7)  for  log  *,  we 

find  that  the  combinations  lor  (for/),  and  lor  (lor  F* 

vanish  identically,  when  f  and  F*  are  alternating  matrices. 
Accordingly  it  follows  out  of  {A},  that 

^  &  +  -&  + 1;:- +  -&  =  °>  • 
while  the  relation 

0>9)  lor  (lor  F*)  =  0,  signities  that  of  the  four 
equations  in  { B},  only  three  represent  independent 
conditions. 

I  shall  now  collect  the  results. 

Let  w  denote  the  space-time  vector  of  the  first  kind 
«'         \ 

l_W2     Vl-?<2     / 

(//  =  velocity  of  matter), 

F  the  space-time  vector  of  the  second  kind  (M,  —  >E) 

(M  =  magnetic  induction,  E  =  Electric  force, 

./the  space-time  vector  af  the  second  kind  (///,  —  />) 

(/«  =  magnetic  force,  f=  Electric  Induction. 

s  the  space-time  vector  of  the  first  kind  (C.  ip) 

(p  =  electrical  space-den>it\',  ('  —f>/>=  com  1  net  ivity  curn-nt, 

€  =  dielectric  constant,  //  =  manin'tic  penne:il)ility, 

a  =  conductivity, 
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then      the    fundamental     equations      for     electromagnetic 

processes  in  moving  bodies  are* 

{A}  lor/=—v 

{B}logF*  =  o 

{C}  w/'=«oF 
*  T-V  i     TiMf"        /'"X* 

{B}^^»=-«*P. 

ww  =  —  1,  and  WF,  w/,  o>F*,  w/**,  «  +  (O>*)<D  which 
are  space-time  vectors  of  the  first  kind  are  all  normal  to 

w,  and  for  the  system  {B},  we  have 

lor  (lor  F*)  =  0. 

Bearing  in  mind  this  last  relation,  we  see  that  we  have 

as  many  independent  equations  at  our  disposal  as  arc  mvt-- 
sary  for  determining  the  motion  of  matter  as  well  as  the 

vector  11  as  a  function  of  •,  //,  ,  f,  when  proper  funda 
mental  data  are  given. 

§  13.     THE  PRODUCT  OF  THE  FIELD- VECTORS /F. 

Finally  let  us  enquire  about  the  laws  which  lead  to  the 

determination  of  the  vector  u>  as  a  function  of  (;,y,:,/.) 

In  these  investigations,  the  expressions  which  are  obtained 

by  the  multiplication  of  two  alternating  matrices 

/= 
o    A*    As 

A* 
F= 

0       Flt     P18     F,, 

/.i       0      /,„ /.; Fsl      0       Pfa     F14 

/si    A*      ° A* 
F31    F32      0       F,4 

A,    A,    A, 0 F+i     ̂ +8    F+s      0 

*  Vide  note  19. 
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are  of  much  importance.     Let  us  write. 

(70)    fF= 

8 S.*-L  sls         s84 

S3,  S33-L     S.. 

S*a  S*.,  S44-L 

Then  (71)     SI1+S,,+S33+S44=0. 

Let  L  now  denote  the  symmetrical  combination   of  the 
indices  I,  2,  3,  4,  given  by 

=••     /„  F13+/3I  Psl+/lf  pif +/14  Fi4 

) 
Then  we  shall  have 

-  t;;±':;F;;) 
In  order  to  express  in  a  real  form,  we  write 

(74)  S  = 

S81    S82    S,3    S2  + 

S»i    S,,    S31    S34 

X,  Y,  Z,  _,T, 

X,  Y,  Z,  -iT, 

X..  >"  Z  -zT; 

-iX,  -iT,  -tZ,  T, 

nrJJC.=?   r/^M,-^,,^   -mrMr+<.,E.-«yEv-,.  K.l 
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(75)  X,=tn,M,+e.E,,     Y,=wi,M,+?,E,  etc. 

X,=e,M,-erM,,     T,=m,E,-»»,Et  etc. 

li,=~ 

These  quantities  are  all  real.  In  the  theory  for  bodies 

at  rest,  the  combinations  (X,,  X,,  X.,  Y.,  Y,,  Yr,  Z,, 

Zv,  ZJ  are  known  as  "Maxwell's  Stresses,"  T,,  T,,  T, 

are  known  as  the  Poynting's  Vector,  T,  as  the  electro 

magnetic  energy-density,  and  L  as  the  Langrangian 
function. 

On  the  other  hand,  by  multiplying  the  alternating 

matrices  of,/"*  and  F*,  we  obtain 

(77)  P*/*=-S1I-L,     -Slt        ,   -Stl        .    -S14 

—  SS1        .     —  Sg2  —  L,    —  S2S        ,    —  S24 

S1  —  S,2        ,    —  S,,—  L,    —  S,,. 

—  S41  —  S4S  —  S4S  —  S44—  L 

and  hence,  we  can  put 

(78)  /F  =  S-L,  F*.r*=-S-L, 

where  by  L,  we  mean   L-times  the  unit  matrix,  i.e.  the 
matrix  with  elements 

|  L^<  .  |  ,    (c4A=l,    e**=0,    A^A-    /*,  A-=l,  2,  3,4). 

Since  here  SL  =  L^,  we  deduce  that, 

F*/*/F  =  (  -S-L)  (S-L)  =  -  SS  +  L«, 

and  find,  since/*/  =  Dot  '-/.  F*  F  =  Det  *    F,    we    arrive 
at  the  intonating  conclusion 

*  Vide  note  18. 
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(79)  SS  =  L«  -  Det  *  /  Det  *  F 

i.r.  the  product  of  the  matrix  S  into  itself  can  be  ex 

pressed  as  the  multiple  of  a  unit  matrix  —  a  matrix  in  which 
all  the  elements  except  those  in  the  principal  diagonal  are 

zero,  th*1  elements  in  the  principal  diagonal  are  all  equal 

and  have  the  value  given  on  the  right-hand  side  of.  (7(J). 
Therefore  the  general  relations 

(80)  SM  Slt  +  S*.  Sat  +  6A,  S,*+S4l  S4»=«, 

h,  k  being  unequal  indices  in  the  series  1,  2,  3,  4,  and 

(81)  SM  SlA+S*,  S,*+S*S  SS»+S*,  S4»  =La- 

Det  *  /  Det  *  F, 

for//  =  1,2,  3,  4. 

Now  if  instead  of  F,  and  /  in  the  combinations  (72) 

and  (73),  we  introduce  the  electrical  rest-force  *,  the 

magnetic  rest-force  *,  and  the  rest-ray  tt  [(55),  (56)  and 

(57)1,  we  can  pass  over  to  the  expressions,  — 

(82)  L  =  —  i  c  *  ¥  +  J  p.  *  *7 

(83  j              S»4 

-f-  c 

(h,  k  =  1,  2,  3,  4). 

Here  we  have 

<|><t>  =  4ii»+«t»/+<l>:,  »+*,',  *  *  =  ̂ ,'J-*!1  +*•*+*«  ' 

eAA   =  1,  ekk  —  o  (h=f=k). 

The  right  side  of  (82)    as    well   as    L    is    an    invariant 

in    a    Lorentz  transformation,  and  the  4x4  element  on  the 
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right  side  of  (83)  as  well  as  S*A  represent  a  space  time 

vector  of  the  second  kind.  Remembering  this  fact,  it 

suffices,  for  establishing  the  theorems  (82)  and  (83)  gener 

ally,  to  prove  it  for  the  special  case  o>l=  o,  w,  =o,  ?/?s  =o, 

w4=/.  But  for  this  case  w  =  o,  we  immediately  arrive  at 

the  equations  (82)  and  (83)  by  means  (45),  (51),  (60) 

on  the"  one  hand,  and  c  =  eE,  M  =  ps//  on  the  other  hand. 

The  expression  on  the  right-hand  side  of  (81),  which 

equals 

[-5-  (m  M  -  <?E)«]  +  (em)  (EM), 

^is  =  o,  because  (cm  —  c  <S>  ̂ ,  (EM)  =  /x  4»  *;  now  referring 
> 

back  to  79),  we  can  denote  the  positive   square  root   of   this 

expression  as  Det  *  S. 

Since  f  —  —  /,  and  F  =  -  -  F,  we  obtain  for  S,  the 

transposed  matrix  of  S,  the  following  relations  from  (78), 

(84)  F/  =  S-L,/*  F*  =  -  S-L, 

ThenisS-S=  |  S»*-S,*  | 

an  alternating  matrix,  and  denotes  a  space-time  vector 

of  the  second  kind.  From  the  expressions  (83),  we 

obtain, 

(85)  S  -  S~=   -  (c/t  -  1)  fa>,n], 

from  which  we  deduce  that  [see  (57),  (58)]. 

(86)  <o  (S  -  S)*  =  o, 

(87)  w  (S  -~S)  =  (e  p  -  1)  O 
When  the  matter  is  at  rest  at  a  space-time  point,  u=o, 

then  the  equation  86)  denotes  the  existence  of  the  follow 

ing  equations 

Zy=Y,,     X,=Z,,     Y,=X,, 
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and  from  83), 

T,=nif  T,=n2,  T..=«:| 

x^t^n,,  Y,=f/,n2.  #,=^0, 

Now  by  means  of  a  rotation    of   the    space  co-ordinate 
system  round  the  null-point,  we  can  make, 

Z,=Y.=o.     Xt=Z,=0,     X,=X,=0. 
.  According  to  71),  we  have 

'88)     X,+Y,+Z..  +  T,=o. 

and  according  to  83),  T,>o.     In    special    cases,    where  Q vanishes  it  follows  from  81)  that 

and  if  T,  and  one  of  the  three  magnitudes  X,,  Y,.  Z.  are 

=  ±  Det  *  Sr  the  two  other.s  =  -  Det  ̂   S.  If  fi  does  not 
vanish  let  O  ̂=0,  then  we  have  in  particular  from  80) 

Tr  X,=0,  Ts  Y,=0,  Z,Ts+TtTf=0. 

and  if    f),  =0,    «1=0,    Zr=-T,      It  follows  from  (81), 
(see  also  83)  that 

and      -Z,=T,  =   VDet  "S-f-e,*!),' 

The  space-t-'me  vector  of  the  first  kind 

f89)  K  =  lorS, 

is  of  very  o^reat  imjwrtanpe    for    which    we    now    want   to 
demons!  rnte  a  very  important  transformation 

Accord  in-  to  7*\  S  =  L+/F,  and  it  follows  that 

lor  S=lor  L  +  lor/F. 
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The  symbol  '  lor  '  denotes  a  differential  process  which 
in  lor  /F,  operates  on  the  one  hand  upon  the  components 

of  f,  on  the  other  hand  also  upon  the  components  of  F. 

Accordingly  lor  f¥  can  be  expressed  as  the  sum  of  two 

parts.  The  first  part  is  the  product  of  the  matrices 

(lor  /)  F,  lor  /  being  regarded  as  a  1  x  4-  series  matrix. 
The  second  part  is  that  part  of  lor  /F,  in  which  the 

diffentiations  operate  upon  the  components  of  F  alone. 

From  78)  we  obtain 

/F=-F*/*-2L; 

hence  the  second  part  of  lor  /F=  —  (lor  F*)/*+  the  part 
of  —2  lor  L,  in  which  the  differentiations  operate  upon  the 

components  of  F  alone  We  thus  obtain 

lor  S  =  (lor/)F-(lor 

where  N  is  the  vector  with  the  components 

8F..  f        8FS1  6F,,  f    _ -~-~  ~^~ 

<//  =  !,  2,  3,4) 

By  using  the  fundamental  relations    A)  and     B),     90) 
is  transformed  into  the  fundamental  relation 

(91)  lor  S  =  — *F  +  N. 

In    the    limitting     case    <  =  1.    /x  =  l.  /=F.    X    vanishes 
identically. 
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Now  upon  the  basis  of  the  equations  (55)  and  (56), 

and  referring  back  to  the  expression  (82)  for  L,  and  from 

57)  we  obtain  the  following  expressions  as  components 

of  \,_ 

,92)  Xt=-   *  **      l_l  **_£. • 

for  A=l,  2.  3,  4. 

Now  if  we  make  use  of  (59),  and  denote  the  space- 

vector  which  has  11,,  i!2,  113  as  the  •-,//,  -  components  by 
the  symbol  W,  then  the  third  component  of  92)  can  be 

expressed  in  the  form 

,93) 

The  round  bracket  denoting  the   scalar    product  of   the 
vectors  within  it. 

§  1A.       THE    PONDEROMOTIVE    FORCE.* 

Let  us  now  write  out  the   relation    K=lor   S  =  —  . 

in  a  more  practical  form  ;  we  have  the  four  equations 

Vide  note  40. 



52  PRINCIPLE    OF    RELATIVITY 

0#v      9Z.      QZ, _  +_..  _a_ 

/  07  \   1  -K-  _  0  T  „     9  T  y     9  T  .     9  T  ,        I? (97)  K*       "  <-t^i: 

It  is  my  opinion  that  when  we  calculate  the  pondero- 

motive  force  which  acts  upon  a  unit  volume  at  the  space- 

time  point  .',  y,  :,  /,  it  lias  got,  .<•,  y,  -  components  as  the 
first  three  components  of  the  space-time  vector 

This  vector  is  perpendicular  to  w  ;  the  law  of  Energy 

Jiiids  iti  expression  in  the  fourth  relation. 

The  establishment  of  this  opinion  i^  reserved  for  a 

separate  tract. 

In  the  limitting  case  €=1,  /*=!,  <r=0,  the  vector  N=0, 

S=p(D,  wK^^O,  and  we  obtain  the  ordinary  equations  in  the 

theory  of  electrons. 
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MECHANICS  AND  THE  RELATIVITY-  POSTULATE. 

It  would  be  very  unsatisfactory,  if  the  new  way  of 

looking  at  the  time-concept,  which  permits  a  Lorentz 

transformation,  were  to  be  confined  to  a  single  part  of 
Phvsics. 

Now  many  authors  say  that  classical  mechanics  stand 

in  opposition  to  the  relativity  postulate,  which  is  taken 

to  be  the  basii  of  the  new  Electro-dynamics. 

In  order  to  decide  this  let  us  fix  our  attention  upon  a  spe 

cial  Lorentz  transformation  represented  by  (Hi),  (H),  (1  -)> 

with  a  vector  v  in  any  direction  and  of  any  magnitude  <y<l 

but  different  from  zero.  For  a  moment  we  shall  not  suppose 

any  special  relation  to  hold  between  the  unit  of  length 

and  the  unit  of  time,  so  that  instead  of  /,  /',  <y,  we  shall 

write  ct,  ct'  ,  and  q/c,  where  c  represents  a  certain  positive 
constant,  and  -7  is  <c.  The  above  mentioned  equations 
arc  transformed  into 

, 

c1—  q«  '  —  </'' 

They   denote.  as    we    remember,   that  r  is  the  space-voMor 

(•>y>  -)>  ''  's  th'1  space-vector  (•'''  y     ') 

If  in  these  equations,  kcej>ing  '•    constant    we   approach 
the  limit  c  =  oo,  then  we  obtain  from  these 

The  new  e(|Uatiniis  would  now  denote  the  transforma 

tion  of  a  -patial  co-ordinate  system  (*,  y,  :)  to  another 

spatial  co-ordinate  »\>t.  in  (  '  y'  -')  with  parallel  axt-s,  the 
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null  point  of  the  second  system  moving  with  constant 

velocity  in  a  straight  line,  while  the  time  parameter 

remains  unchanged.  We  can,  therefore,  say  that  classical 

mechanics  postulates  a  covariance  of  Physical  laws  for 

the  group  of  homogeneous  linear  transformations  of  the 

expression 

+*    (1) 

when  c  =  <x. 

Now  it  is  rather  confusing  to  find  that  in  one  branch 

of  Physics,  we  shall  find  a  eovariance  of  the  laws  for  the 

transformation  of  expression  (1)  with  a  finite  value  of  c, 

iu  another  part  for  c=oc. 

It  is  evident  that  according  to  Newtonian  Mechanics, 

this  covariance  holds  for  c=oo}  and  not  for  £==  velocity  of 

light. 

May  we  not  then  regard  those  traditional  covariances 

for  f  =  oo  only  as  an  approximation  consistent  with 

experience,  the  actual  covariance  of  natural  laws  holding 
for  a  certain  finite  value  of  c. 

I  may  here  point  out  that  by  if  instead  of  the  Newtonian 

Relativity-Postulate  with   e=oc,    \ve    assume  a   relativity- 

postulate  with  a  finite  c,  then    the  axiomatic   construction 

.of  Mechanics  appears  to  gain  considerably  in  perfection. 

The  ratio  of  the  time  unit  to  the  length  unit  is  chosen 

in  a  manner  so  as  to  make  the  velocity  of  light  equivalent 

to  unity. 

While  now  I  want  to  introduce  geometrical  figures 

in  the  manifold  of  the  variables  (  ,  //,  -,  /),  it  may  be 
convenient  to  leave  (y,  )  out  «-F  account,  and  to  treat  s 

and  t  as  any  possible  pair  of  co-ordinates  in  a  plane, 
refered  to  oblique  axes. 
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\  space  time  null  point  0  (.r,  y,  -,  /=0,  0,  0,  0)  will  be 
kept  fixed  in  a  Lorentx.  transformation. 

The  figure— * '-ya -z* +£*  =  !, />0  ...  (2) 

which  represents  a  hyper  holoidal  shell,  contains  the  space- 

time  points  A  (j-,  y,  :,  /  =  0,  0,  0,  1),  and  all  points  A' 
which  after  a  Lorentz-transformation  enter  into  the  newly 

introduced  system  of  reference  as  (.r' ,  y',  -.',  /'  =  0,  0,  0,  1). 

The  direction  of  a  radius  vector  OA'  drawn  from  0  to 

the  point  A'  of  (2),  and  the  directions  of  the  tangents  to 

(2)  at  A'  are  to  be  called  normal  to  each  other. 

Let  us  now  follow  a  definite  position  of  matter  in  its 

course  through  all  time  t.  The  totality  of  the  space-time 

points  ('',  t/,  r,  0  which  correspond  to  the  positions  at 
different  times  /,  shall  be  called  a  space-time  line. 

The  task  of  determining  the  motion  of  matter  is  com 

prised  in  the  following  problem: — It  is  required  to  establish 

for  every  space-time  point  the  direction  of  the  space-time 
line  passing  through  it. 

To  transform  a  space-time  point  P  (*•,  y,  ~,  f)  to  rest  is 
equivalent  to  introducing,  by  means  of  a  Lorentx  transfor 

mation,  a  new  system  of  reference  (•',  y',  -',  t'},  in  which 

the  t'  axis  has  the  direction  OA',  OA'  indicating  the  direc 
tion  of  the  space-time  line  passing  through  P.  The  space 

£'=const,  which  is  to  be  laid  through  P,  is  the  one  which 
is  perpendicular  to  the  spuce-time  line  through  P. 

To  the  increment  ///  of  the  time  of  P  corresponds  the 
increment 

of    the'  newly    introduced  time  parameter  /".     The  value  of 
the  intesrral 
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when  calculated  upon  the  space-time  line  from  a  fixed 

initial  point  P0  to  the  variable  point  P,  (both  being  on  the 

space-time  line),  is  known  as  the  '  Proper-time  '  of  the 
position  of  matter  we  are  concerned  with  at  the  space-time 

point  P.  (It  is  a  generalization  of  the  idea  of  Positional- 

time  which  was  introduced  by  Lorentz  for  uniform 
motion.) 

If  we  take  a  body  R*  which  has  got  extension  in  space 
at  time  t0,  then  the  region  comprising  all  the  space-time 

line  passing-  through  R*  and  /„  shall  be  called  a  space-time 
filament. 

If  we  have  an  anatylical  expression  6(.\>  y,  ?,  /)  so  that 

Q(x,  y  z  t)  =  ft  is  intersected  by  every  space  time  line  of  the 

filament  at  one  point,  —  whereby 

*®.\  -( 
a        \ 

then  the  tolality  of  the  intersecting  points  will  be  called 
a  cross  section  of  the  filament. 

At  any  point.  P  of  such  across-section,  we  can  introduce 
by  means  of  a  Lorentz  transformation  a  system  of  refer 

ence  (/,  y,  :'  t),  so  that  according  to  this 

. 

8..'         8y' 

The  direction  of  the  uniquely  determined  /'—axis  in 
question  here  is  known  as  the  upper  normal  of  the  cross- 

section  at  the  point  P  and  the  value  of  r/J=/  J  /  <L>'  ,hj  ,f:' 
for  the  surrounding  points  of  P  on  the  cross-section  is 

known  as  the  elementary  contents  (Inhalts-element)  of  the 

cross-section.  In  this  sense  R"  is  to  be  regarded  as  the 
cross-section  normal  to  the  /  axis  of  the  filament  at  the 

point  /=i",  and  the  volume  of  the  body  R'  is  to  be 
regarded  as  the  contents  of  the  cross-  section. 
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If  we  allow  R°  to  converge  to  a  point,  we  oome  to  the 
conception  of  an  infinitely  thin  space-time  filament.  In 

such  a  case,  a  space-time  line  will  be  thought  of  as  a 

principal  line  and  by  the  term  '  Proper-time  '  of  the  filament 

will  be  understood  the  '  Proper-time  '  which  is  laid  along 
this  principal  line  ;  under  the  term  normal  cross-section 

of  the  filament,  we  shall  understand  the  cross-section 

upon  the  space  which  is  normal  to  the  principal  line 

through  P. 

We  shall  now  formulate  the  principle  of  conservation 
of  mass. 

To  every  space  R  at  a  time  t,  belongs  a  positive 

quantity  —  the  mass  at  R  at  the  time  t.  If  R  converges 

to  a  point  (.c,  y,  :,  /),  then  the  quotient  of  this  mass,  and 

the  volume  of  R  approaches  a  limit  p.(x,  t/,  :,  t),  which  is 

known  as  the  mass-density  at  the  space-time  point 

The  principle  of  conservation  of  mass  says  —  that  for 

an  infinitely  thin  space-time  filament,  the  product  /*//.}, 

where  /x=  mass-density  at  the  point  (.r,  yt  :,  /)  of  the  fila 

ment  (i.e.,  the  principal  line  of  the  filament),  //.I  =eontents 

of  the  cross-section  normal  to  the  /  axis,  and  passing 

through  ('',y,:,  t),  is  constant  along  the  whole  filament. 

Now  the  contents  f/J.  of  the  normal  cross-section  of 

the  filament  which  is  laid  through  (•••,  t/,  :,  f)  is 

(4) </!—„« 

and  the  function  v=     — ^—    =n\/\_.l*    =/*-2l.    (5) — iw4  O' 

may   be   defined   as   the    rest-mass  density  at  the  position 
8 
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(xyzf).  Then  the  principle  of  conservation  of  mass  can 
be  formulated  in  this  manner  :  — 

For  an  infinitely  thin  space-time  fi/amenl,  tJie  product 

of  the  rest-mass  density  and  the  contents  of  the  normal 

cross-section  is  constant  atony  the  whole  filament. 

In  any  space-time  filament,  let  us  consider  two  cross- 

sections  Q."  and  Q',  which  have  only  the  points  on  the 
boundary  common  to  each  other  ;  let  the  space-time  lines 

inside  the  filament  have  a  larger  value  of  i  on  Q'  than 
on  Q.0.  The  finite  range  enclosed  between  ti°  and  Q' 

shall  be  called  a  space-time  sic/tel*  Q'  is  the  lower 

boundary,  and  Q'  is  the  upper  boundary  of  the  nickel. 

If  we  decompose  a  filament  into  elementary  space-time 

filaments,  then  to  an  entrance-point  of  an  elementary 
filament  through  the  lower  boundary  of  the  nickel,  there 

corresponds  an  exit  point  of  the  same  by  the  upper  boundary, 

whereby  for  both,  the  product  vdJ,  taken  in  the  sense  of 

(4)  and  (5),  has  got  the  same  value.  Therefore  the  difference 

of  the  two  integrals  jW/n  (the  first  being  extended  over 

the  upper,  the  second  upon  the  lower  boundary)  vanishes. 

According  to  a  well-known  theorem  of  Integral  Calculus 
the  difference  is  equivalent  to 

////  lor  vu  dfdydzdt, 

the  integration  being  extended  over  tin'  whole  range  of 
the  Kic/icl,  and  (comp.  (67),  §  15) 

,      -_  8vo>1       8»'<i)2   ,   8^3   ,    3va)4 D11"'--      +  -      +  -      +-- 

If  the  nickel  reduces    to  a  point,    then    the   differential 

equation  lor  vw  =  0,  (6) 

*  Sichel  —  a  German  word    meanintr   a   crescent   or   a   scythe.     The 
original  terra  is  retained  as  there  is  no  snitnble  Kn»li.sli  equivalent. 
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which  is  the-  condition  of  cortinuity 

-*    ,  .          r    ,      /  _0 
a*        a^        a--     f<8< 

Further    let     us    form     the     integial 

N=SISJvd«lyd:dt  (7) 

extending  over  the  whole  range  of  the  space-time  .tic/tcl. 

We  shall  decompose  the  sichel  into  elementary  space-time 

filaments,  and  every  one  of  these  filaments  in  small  elements 

dr  of  its  proper-time,  which  are  however  large  compared 

to  the  linear  dimensions  of  the  normal  cross-section  ;  let 
us  assume  that  the  mass  of  such  a  lilament  vdJ  n=dm  and 

write  T"  ,  rl  for  the  'Proper-time'  of  the  upper  and  lower 
boundary  of  the  sichel. 

Then  the  integral  (?)  cau  be  denoted  by 

IJvdJn  </T=/(T'-T')  dm. 
taken  over  all  the  elements  of  the  sichel. 

Now  let  us  conceive  of  the  space-time  lines  inside  a 

space-time  nichd  as  material  curves  composed  of  material 

points,  and  let  us  suppose  that  they  are  subjected  to  a 

continual  change  of  length  inside  the  sichel  in  the  follow 

ing  manner.  The  entire  c-urves  are  to  be  varied  in  any 
possible  manner  inside  the  *ic/tc(,  while  the  end  points 
on  the  lower  and  upper  boundaries  remain  fixed,  and  the 

individual  substantial  points  upon  it  are  displaced  in  such  a 

manner  that  they  al  \va\s  move  forward  normal  to  the 

curves.  The  whole  pit,  cess  may  be  analytically  repre 

sented  by  means  t,f  a  parameter  \,  nnd  to  the  value  \  =  o, 

shall  correspond  the  actual  curves  inside  the  .v/'7/t7.  Such  a 

process  may  be  called  a  virtual  displacement  in  the  sichel. 

Let  the  point  (.r,  _//,  r,  /)  in  the  sichel  \  =  o  have  the 

values  .r  +  S--,  .//  +  fy,  .-  +  8-,  f  +  «/,  when  the  parameter  has 
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the  value  A  ;  these  magnitudes  are  then  functions  of  (./•,  y, 
z,  /,  A).  Let  us  now  conceive  of  an  infinitely  thin  space- 

time  filament  at  the  point  (j-  y  :  f)  with  the  normal  section 
of  contents  djn,  and  if  dJn+&dJK  be  the  contents  of  the 

normal  section  at  the  corresponding  position  of  the  varied 

filament,  then  according  to  the  principle  of  conservation 

of  mass  —  (v  +  dv  being  the  rest-mass-deusity  at  the  varied 
position), 

(8)  (v  +  Sv)  (dJ  „  +  Sd  J  „  )  =  i/rfj  „  =  dm. 

In  consequence  of  this  condition,  the  integral  (7) 

taken  over  the  whole  range  of  the  sichel,  varies  on  account 

of  the  displacement  as  a  definite  function  N  +  8N  of  X, 

and  we  may  call  this  function  N  +  SN  as  the  mass  action 

of  the  virtual  displacement. 

If  we  now  introduce  the  method  of  writing  with 
indices,  we  shall  have 

(9)      rf(a4+8.-4)=cl,-4  +  2   !?£*  +  ̂   d\ 
k      O'r'k  OA 

*=  1,2,3,4 

^=1,2,3,4 

Now  on  the  basis  of  the  remarks  already  made,  it  is 

clear  that  the  value  of  N  +  SN,  when  the  value  of  the 

parameter  is  A,  will  be  :  — 

(10) 

the  integration  extending  over    the    whole    sichel  <( 

where  ̂ (r  +  Sr)  denotes  the  magnitude,  which  is  deduced  from 

Jd  .»•,  +  d$xt  )  «  _(dxs  +d8x~)*r^(~d.i>  4  +dS  .> 
by  means  of  (9)  and 
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therefore :  — 

=  1,  2,  3,  4. 

1  =  1,  2,  3,  4. 

We  shall    now   subject   the    value    of   the   differential 

quotient 

(12) 

to  a  transformation.     Since  each  8-  A  as  a  function  of  (r,  y, 
z,  0    vanishes   for   the  zero-value  of  the  paramater  A.,  so  in 

,     do.l't 
general  ----      =o,  for  \  =  o. 

O.'-* 

Let  us  now  put  (    -  -  *  )  =  £A  (/*  =  !,  2,  3,  4)          (13) 

then    on  the  basis  of  (10)  and  (11),  we  have  the  expression 
(12):- 

,1  B  (Jy  d:  dt 

for  the  system  (a-,  ./-.,  ./•  ,  r4)  on  the  boundary  of  the 

Kic/i'-f,  (8.r,  8r2  '&r3  8  })  shall  vanish  for  every  value  of 
\aiul  therefore  £,,£a,f,,£4  are  nil.  Then  by  partial 
integration,  the  integral  is  transformed  into  the  form 

*w'    -U        rw*«tf,      ,     8"w*«, 

-i      "^v     ~a^r 
Jj;  <hj  1  1  . 
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the  expression  within  the  bracket  may  be  written  as 

The  first  sum  vanishes  in  consequence  of  the  continuity 

equation  (6).     The  second  may  be  written  as 

a«u    (l>'l       Qwk  dcy       Qwh    di's      a<oA  dc4 ~ 

(l*>k  d  (drk 

dr          dr\dr 

whereby     —     is    meant   the  differential  quotient    in    the 
t/T 

direction  of   the  space-time  line  at  any  position.     For  the 

differential  quotient  (12),  we  obtain    the    final   expression 

dx  d>/  //•-  tit. 

For  a  virtual  displacement  in  the  Kiclicl  we  have 

postulated  the  condition  that  the  points  Hijipnsi'd  to  be 

substantial  shall  advance  normally  to  the  curves  i^ivin«jf 

their  actual  motion,  which  is  \  —  o;  this  condition  denotes 

that  the  £A  is  to  satisfy  the  condition 

H'I  ̂ i+«'8  ̂ a+w3  £3+«;*  f»=«'.  (15) 

Let  us  now  turn  our  attention  to  the  Mnxwellian 

tensions  in  the  electrodynamics  of  stationary  bodies,  and 

let  us  consider  the  results  in  §  1:1  and  13;  then  we  find 

that  Hamilton's  Principle  can  be  reconciled  to  the  relativity 
postulate  for  continuously  extended  elastic  media. 
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At  every  space-time  point  (as  in  §  13),  let  a  space  time 

matrix  of  the  'ind  kind  be  known 

(16)  S= 

where  X,  Y,  ......  Xx,  T,  are  real  magnitudes. 

For  a  virtual  displacement  in  a  space-time  siohel 

(with  the  previously  applied  designation)  the  value  of 

the  integral 

slt 
BM S18  SI4  |= 

x, 
Y, 

z,     -n\ stl S2Z 

SQ 

83     °8  + 

X, 

Yy 

Zv       -iTy S3l 
S39 

So 

33     to3* 

x.. 

Y, 

Zr        -iT: S41 
S4, 

S43      S4* 

-;x 

/    —ft 

r,  -«z,    Tr 

(17) 
dzdt 

extended  over  the  whole  range  of  the  sichel,  may  be  called 

the  tensional  work  of  the  virtual  displacement. 

The    sum    which    comes    forth    here,    written    in    real 

magnitudes,  is 

Xi    V        i    f~I        i    rn        *    xr           O  O  "       .    -\y-         U  O.F    ,            rw       O  ̂* 
j+lyT^t'rA/'r-A-j     -^—       +  -".  y   f-  ...Li.   o.i  ay  3r 

—  X   a.—  '—      -l-T    ̂ 8'+     T   ̂8/ a  /  a  .'•          a  / 

we  can  now  postulate  the  following   minimum  principle  in 
mechanics. 

If  any  space-timr  Si,-//,-/  /,<•  Lovndeil ,  tlicu  for  each 

rirtitiit  jfaplacement  ///  th<-  $i<-h>'l ,  ilte  mini  of  Hie  w/r/.v.s1- 

works,  and  tension  works  s/nilf  ahcm/x  lie  mi  c>tremum 

for  that  process  of  the  spacr-lime  line  in  the  8ie/n 
occurs. 

The  meaning  is,  that  for  each  virtual  displacement,. 

A=0 
(1*5 
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By  applying  the  methods  of  the  Calculus  of  Varia 

tions,  the  following  four  differential  equations  at  once 

follow  from  this  minimal  principle  by  means  of  the  trans 

formation  (H),  and  the  condition  (15). 

(19)       v    9™'.  =K,+x!t-,          (7,  =  l,a:S4) 

,,,onee  K,  =  +  * 

are  components  of  the  space-time  vector  1st  kind  K—  lor  S, 
and  X  is  a  factor,  which  is  to  be  determined  from  the 

relation  tv^j=  —  1.  By  multiplying  (19)  by  wk,  and 

summing  the  four,  we  obtain  X  =  Kw,  and  therefore  clearly 

K  +  (Kw}w  will  be  a  space-time  vector  of  the  Jst  kind  which 
is  normal  to  w.  Let  us  write  out  the  components  of  this 

vector  as 

X,  Y,  Z,-/T 
Then  we  arrive  at  the  following  equation  for  the  motion 
of  matter, 

(21)  =X,       •  =T  ;     ,-  =Z, dr  \drj  dr 

—  (  —  |  =T,  and  we  have  also ar  \dr/ 

and   X     f  +  Y      +  ZI:=T<. </T  (Zr  </T  (?T 

On  the  basis  of  this  condition,  the  fourth  of  equations  (21) 

is  to  be  regarded  as  a  direct  consequence  of  the  first  three. 

From  (21),  we  can  deduce  the  law  for  the  motion  of 

a  material  point,  i.e.,  the  law  for  the  career  of  an  infinitely 

thin  space-time  filament. 
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Let  *,  v,  2,  f,  denote  a  point  on  a  principal  line  chosen 

in  any  manner  within  the  filament.  We  shall  form  the 

equations  ('21)  for  the  points  of  the  normal  cross  section  of 
the  filament  through  styt  z,  /,  and  integrate  them,  multiply 

ing  by  the  elementary  contents  of  the  cross  section  over  the 

whole  space  of  the  normal  section.  If  the  integrals  of  the 

right  side  be  R,  Ry  Rt  R,  and  if  m  be  the  constant  mass 

of  the  filament,  we  obtain  ^ 

R  is  now  a  space-time  vector  of  the  1st  kind  with  the 

components  (R,  Ry  R.  R,)  which  is  normal  to  the  space- 

time  vector  of  the  1st  kind  w,  —  the  velocity  of  the  material 
point  with  the  components 

d.f      dy      dz       .   dt 
,r   >  ~T  •  ~j     »  *    T  ' (IT        <ir       <IT  </T 

We    may   call    this    vector    R    t/ie    moving  force    of    the 

material  point. 

If  instead  of  integrating  over  the  normal  section,  we 

integrate  the  equations  over  that  cross  section  of  the  fila 

ment  which  is  normal  to  the  /  axis,  and  passes  through 

(  s.4V,0,  then  [See  (4)]  the  equations  (2:!)  art-  obtained,  but 

are  now  multiplied  by  —  ;  in  part  ioular,  the  last  equa 

tion  comes  out  in  the  form, 

The  right  side  is  to  be  looked  upon  «x  the  amount   of  u-ork 
(hue    per   unit  <>f   li/ne    at    the    material    point.      In    this 

9 
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equation,    we    obtain    the    energy-law    for   the    motion  of 
the  material  point  and  the  expression 

may  be  called  the  kinetic  energy  of  the  material  point. 

Since   tit    is   always    greater  than  tlr    we  may  call  the 

quotient  '—  -  —  r  as   the  "  Gain  "  (vorgehen)    of  the  time 

over  the  proper-time  of  the  material  point  and  the  law  can 

then  be  thus  expressed  ;  —  The  kinetic  energy  of  a  ma 
terial  point  is  the  product  of  its  mass  into  the  gain  of  the 

time  over  its  proper-time. 

The  set  of  four  equations  (22)  a^ain  shows  the  sym 

metry  in  (s&tsj),  which  is  demanded  by  the  relativity 

postulate;  to  the  fourth  equation  however,  a  higher  phy 

sical  significance  is  to  be  attached,  as  we  have  already 

seen  in  the  analogous  case  in  electrodynamics.  On  the 

ground  of  this  demand  for  symmetry,  the  triplet  consisting 

of  the  first  three  equations  are  to  be  constructed  after  the 

model  of  the  fourth  ;  remembering  this  circumstance,  we 

are  justified  in  saying,  — 

"  If  the  relativity-postulate  be  placed  at  the  head  of 
mechanics,  then  the  whole  set  of  laws  of  motion  follows 

from  the  law  of  energy." 
I  cannot  refrain  from  showing  that  no  contradiction 

to  the  assumption  on  the  relativity-postulate  can  be 

expected  from  the  phenomena  of  gravitation. 

If  B*(.>*,  /*,  z*t  /*)  be  a  solid  (fester)  space-time  point, 

then  the  region  of  all  those  space-time  points  B  (./•,  i/,  z,  /), 
for  which 
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may  be  called  a  "  Hay-figure  "  (Strahl-gebilde)  of  the  space 

lime  point  B*. 

A  space-time  line  taken  in  any  manner  can  be  cut  by  this 

figure  only  at  one  particular  point ;  this  easily  follows  from 

the  convexity  of  the  figure  on  the  one  hand,  and  on  the 

other  hand  from  the  fact  that  all  directions  of  the  space- 

time  lines  are  only  directions  from  B*  towards  to  the 

concave  side  of  the  figure.  Then  B*  may  be  called  the 
light-point  of  B. 

If  in  (23),  the  point  ( ••  y  z  /)  be  supposed  to  be  fixed, 

the  point  (t*  t/*  c*  (•*)  be  supposed  to  be  variable,  then 
the  relation  (:J#)  \vould  represent  the  loeus  of  all  the  space- 

time  points  ft*,  which  are  light-points  of  B. 

Let  us  conceive  that  a  material  point  F  of  mass  m 

may,  owing  to  the  presence  of  another  material  point  F*, 
experience  a  moving  force  according  to  the  following  law. 

Let  us  picture  to  ourselves  the  space-time  filaments  of  F 

and  F*  along  with  the  principal  lines  of  the  filaments.  Let 
BC  be  an  infinitely  small  element  of  the  principal  line  of 

F  ;  further  let  B*  be  the  light  point  of  B,  C*  be  the 

light  point  of  C  on  the  principal  line  of  F*;  so  that 

OA'  i.s  the  radius  vector  of  the  hyperboloidal  fundamental 

figure  (23)  parallel  to  B*C*,  finally  D*  is  the  point  of 

intersection  of  line  B*C*  with  the  space  normal  to  itself 
and  passing  through  B.  The  moving  force  of  the  mass- 

point  F  in  the  space-time  point  B  is  now  the  space- 

time  vector  of  the  first  kind  which  is  normal  to  BC, 

and  which  is  composed  of  the  vectors 

3 

(21)    ;«;»*(     (j\  )    HI)*    in  the  direction    of    BD*,   and 

another    vector    of    Mutable    \;i.lue    in    direction  of    B*C*. 



68  PRINCIPLE    OF    RELATIVITY 

Now  by  (  -  -      #  J  is  to  be  understood  the  ratio  of  the    two 

vectors  in  question.  It  is  clear  that  this  proposition  at 

once  shows  the  covariant  character  with  respect  to  a 

Lorentz-group. 

Let  us  now  ask  how  the  space-time  filament  of  F 

behaves  when  the  material  point  F*  has  a  uniform 
translate  ry  motion,  i.e.,  the  principal  line  of  the  filament 

of  F*  is  a  line.  Let  us  take  the  space  time  null-point  in 

this,  and  by  means  of  a  Lorentz-transformation,  we  can 

take  this  axis  as  the  /-axis.  Let  .*',  y,  z,  t,  denote  the  point 

B,  let  T*  denote  the  proper  time  of  B*,  reckoned  from  O. 
Our  proposition  leads  to  the  equations 

/ae\  <*  _ 

where  (27)  ,c*  +y*  +  ̂2  =(t- 

In  consideration  of  (27),  the  three  equations  (25)  are 

of  the  same  form  as  the  equations  for  the  motion  of  a 

material  point  subjected  te  attraction  from  a  fixed  centre 

according  to  the  Newtonian  Law,  only  that  instead  of  the 

time  t,  the  proper  time  r  of  the  material  jx>int  occurs.  The 

fourth  equation  (2(>)  gives  .then  the  connection  between 

proper  time  and  the  time  for  the  material  point. 

Now  for  different  values  of  T,  the  orbit  of  the  space- 

point  (.r  y  z]  is  an  ellipse  with  the  semi-major  axis  a  and 
the  eccentricity  e.  Let  E  denote  the  excentric  anomaly,  T 
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the  increment  of  the  proper  time  for  a  complete  description 

of  the  orbit,  finally  n~T  ='2tr,  so  that  from  a  properly  chosen 
initial  point  T,  we  have  the  Kepler-equation 

(29)  nr=E-e  sin  E. 

If  we  now  change    the  unit  of    time,  and    denote    the 

velocity  of  light  by  c,  then  from  (28),  we  obtain 

i*    1-fecosE 

Now  neglecting  c~*  with  regard  to  1,  it  follows  that 

7,        7    f  i      i  m*    l-f£cosE~l •*="*L1+t««  i^ssffiJ 
from  which,  by  applying  (29), 

(31)  nt  +  const  =(  1  +  ̂ -^—  \  wr-f  '—     SinE. \  ac*  /  ac2 

the  factor  —  ̂     is  here  the  square  of  the  ratio  of   a  certain 

average  velocity  of  F  in  its  orbit  to  the  velocity  of  light. 

If  now  w'f  denote  the  mass  of  the  sun,  a  the  semi  major 
axis  of  the  earth's  orbit,  then  this  factor  amounts  to  10~s. 

The  law  of  mass  attraction  which  has  bn-n  just  describ 
ed  and  which  is  foimnlated  in  accordance  with  the 

relativity  j>ostu!a<e  would  signifv  that  gravitation  is 

propagated  with  the  velocity  of  light.  In  view  of  the  fact 

that  the  periodic  terms  in  (31)  are  very  small,  it.  is  not 
possible  to  decide  out  of  astronomical  observations  between 

such  a  law  (with  the  modified  mechanics  pro|K>sed  above) 
Hnd  the  Newtonian  law  of  attraction  with  Newtonian 
mechanics. 
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SPACE  AND  TIME 

A    Lecture   delivered     before    the    Naturforscher    Yer- 

sarnmlung  (Congress  of  Natural  Philosophers)  at  Cologne — 
(21st  September,  1908). 

Gentlemen, 

The  conceptions  about  time  and  space,  which  I  hope 

to  develop  before  you  to-day,  has  grown  on  experimental 

physical  grounds.  Herein  lies  its  strength.  The  tendency 

is  radical.  Henceforth,  the  old  conception  of  space  for 

itself,  and  time  for  itself  shall  reduce  to  a  mere  shadow, 
and  some  sort  of  union  of  the  two  will  be  found  consistent 

with  facts. 

,   I 

Now  I  want  to  show  you  how  we  can  arrive  at  the 

changed  concepts  about  time  and  space  from  mechanics,  as 

accepted  now-a-days,  from  purely  mathematical  considera 

tions.  The  equations  of  Newtonian  mechanics  show  a  two 

fold  in  variance,  (i)  their  form  remains  unaltered  when 

we  subject  the  fundamental  space-coordinate  system  to 

any  possible  change  of  position,  (//)  when  we  change  the 

system  in  its  nature  of  motion,  /'.  e.,  when  we  impress  upon 
itanv  uniform  motion  of  translation,  the  null-point  of  time 

plays  no  part.  We  are  accustomed  to  look  upon  the  axioms 

of  geometry  as  settled  once  for  all,  while  we  seldom  have  the 

same  amount  of  conviction  regarding  the  axioms  of  mecha 

nics,  and  therefore  the  two  invariants  are  seldom  mentioned 

in  the  same  breath.  Each  one  of  these  denotes  a  certain 

group  of  transformations  for  the  differential  equations  of 

mechanics.  Wo  look  upon  the  existence  of  the  first  group 

as  a  fundamental  characteristics  of  space.  We  always 

prefer  to  leave  off  tin:  second  group  to  itself,  and  with  a 

li^ht  In-art,  conclude  that  we  can  never  decide  from  physical 

considerations  whether  the  space,  which  is  supposed  to  be 
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at  rest,  may  not  finally  be  in  uniform  motion.  So  those  two 

groups  lead  quite  separate  existences  besides  each  other. 

Tlu-ir  totally  heterogeneous  character  mav  scare  us  away 
from  the  attempt  to  compound  them.  Vet  it  is  the  whole 

compounded  group  which  as  a  whole  gives  us  occasion  for 

thought. 

We  wish  to  picture  to  ourselves  the  whole  relation 

graphically.  Let  ( < ,  i/,  z)  be  the  rectangular  coordinates  of 

space,  and  /  denote  the  time.  Subjects  of  our  perception 

are  always  connected  with  place  and  time.  No  one  has 

observed  a  place  except  at  a  particular  time,  or  Tias  obserred 

a  time  except  at  a  particular  place.  Yet  I  respect  the 

dogma  that  time  and  space  have  independent  existences.  I 

will  call  a  space-point  plus  a  time-point,  i.e.,  a  system  of 

values  x,  ;/,  -,  /,  as  a  n-or Id-point.  The  manifoldness  of  all 
possible  values  of  r,  //,  z,  t,  will  be  the  world.  I  can  draw 

four  world-axes  with  the  chalk.  Now  any  axis  drawn 

(••onsi..ts  of  quickly  vibrating  molecules,  and  besides,  takes 
part  in  all  the  journevs  of  the  earth  ;  and  therefore  gives 

us  occasion  for  reflection.  The  greater  abstraction  required 

for  the  four-axes  does  not  cause  the  mathematician  any 

trouble.  In  order  not  to  allow  any  yawning  gap  to 

exist,  wo  shall  suppose  that  at  every  place  and  time, 

something  perceptible  exists.  In  order  not  to  specify 

either  matter  or  elect  ric.it  \ ,  we  shall  simplv  style  these  as 

substances.  \Vo  direct  our  attention  to  the  ti-nrlil-pohil 
,  y,  :,  t,  and  suppose  that  wo  are  in  a  position  to  recognise 

this  substantial  point  at  any  subsequent  time.  Let-  t/f  he 

the  time  element  corresponding  to  the  changes  of  space 

coordinates  of  this  point  [t/.r,  /It/,  if:].  Then  we  obtain  (as 

a  picture,  so  to  speak,  of  the  perennial  life-career  of  the 

substantial  point), — a  curve  in  the  world — the  Karltl-linr, 

the  points  on  which  unambiguously  correspond  to  the  para 

meter  /  from  +  oo  to— oc.  Tho  whole  world  appears  to  be 
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resolved  in  sucli  world-lives,  and  I  may  just  deviate  from 

my  point  if  I  say  that  according  to  my  opinion  the  physical 

laws  would  find  their  fullest  expression  as  mutual  relations 

among  these  lines. 

By  this  conception  of  time  and  space,  the  (•••,#,  c)  mani- 
folduess  /  =  o  and  its  two  sides  /<o  and  ̂ >o  falls  asunder. 

If  for  the  sake  of  simplicity,  we  keep  the  null-point  of  time 

and  space  fixed,  then  the  first  named  group  of  mechanics 

signifies  that  at  f  =  o  we  can  give  the  .••,  y,  and  r-axes  any 

possible  rotation  about  the  null-point  corresponding  to  the 
homogeneous  linear  transformation  of  the  expression 

The  second  group  denotes  that  without  changing  the 

expression  for  the  mechanical  laws,  we  can  substitute 

(.v-at,y-pt,  z-yt}  for  (.•-,  y,  z)  where  (a,  p,  7)  are  any 
constants.  According  to  this  we  can  give  the  time-axis 

any  possible  direction  in  the  upper  half  of  the  world  />o. 

Now  what  have  the  demands  of  orthogonality  in  spaco  to 

do  with  this  perfect  freedom  of  the  time-axis  towards  the 

upper  half  ? 
To  establish  this  connection,  let  us  take  a  positive  para 

meter  c,  and  let  us  consider  the  figure 

According  to  the  analogy  of  the  hyperboloid  of  two 

sheets,  this  consists  of  two  sheets  separated  by  (  =  o.  Let  us 

consider  the  sheet,  in  the  region  of  l>o,  and  let  us  now 

conceive  the  transformation  of  .-•,  y,  r,  /  in  the  new  system 

of  variables  ;  (,/,  y',  z  ,  t')  by  means  of  which  the  form  of 
the  expression  will  remain  unaltered.  Clearly  the  rotation 

of  space  round  the  null-point  belongs  to  this  group  of 
transformations.  Now  we  can  have  a  full  idea  of  the  trans 

formations  which  we  picture  to  ourselves  from  a  particular 
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tHUuforaialkm  in  which  (y,  r)  remain  unaltered.  Let 

us  draw  the  cross  section  of  the  upper  sheets  with  the 

plane  of  the  .r-  and  /-axes,  i.e.,  the  upper  half  of 

the  hyperbola  -c-l  •—  -  =  ]f  witli  its  asymptotes  (/•////» 
fig.  1). 

Then  let  n«  draw  the  radius  rector  OA',  the  tangent 

A'  B'  at  A',  and  let  us  complete  the  parallelogram  OA' 

B'  C' ;  also  produce  B'  C'  to  meet  the  -axis  at  D'. 

Let  us  now  take  Ox',  OA'  as  new  axes  with  the  unit  mea 

suring  rods  OC'  =  1,  OA'=  ;  then  the  hyperbola  is  again 

expressed  in  the  fonii  <•''('-—  '-  =  1,  t'>o  and  the  transi 

tion  from  (.-,  i/y  -,  /)  to  ( -'i/z't}  is  one  of  the  transitions  in 
|iif-iioii.  L-it  us  add  to  this  characteristic  transformation 
any  possible  displacement  of  the  space  and  time  null-points  ; 

then  we  get  a  group  of  transformation  depending  only  on 

'•,  which  we  may  denote  by  CJr. 

N"MW  let  as,  increase  c  to  infinity.  Thus   -   becomes  zero c 

:uxl  it  :i])]icii->  i'rdu  the  figure  that  the  h\'pei-l)ol:i  is  j^radu- 

all\-  shrunk  into  the  -;i\i<.  the  asymptot  ic  nnglc  lic- 

i-n'iie--  :i  -tnii^hi  one,  and  everv  <|irf-[;>.!  1  nmsfninrit  ion  in 

tlie  limit  changes  in  s'ich  :i  manner  that  the  /-axis  (-in 

Miv  possible  dir;"-tiun  upwiirds,  and  •'  m«>iv  -ind 

i '")'-oxiin:ites  tn  .  Remembering  this  point  it  is 

"leiv  that  the  full  group  belonging  to  Newtonian  Mechanics 

is  siiii)>ly  the  n'roup  (ir,  with  the  value  of  c=oo.  In  this 

state  iii'  aiTairs,  :in«l  sinre  ( !  is  in:tt  hemat  ically  more  iu- 

iellin'ible  thii'i  (r  -x>,  a  mat  hem  ;  .  ,  b\  a  i'n-e  p!:iv 

ol'  imagination,  hit  upon  the  thought  that  natural  pheno 

mena  possess  nn  invarianre  not  only  for  the  group  ('<,, 

but  in  i'ai-l  also  for  a  uroup  d  ,  ,  where  c  is  lintte,  but  yet 
10 
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exceedingly  large  compared  to  the  usual  measuring  units. 

Such  a  preconception  would  be  an  extraordinary  triumph 

for  pure  mathematics. 

At  the  same  time  I  shall  remark  for  which  value  of  c, 

this  invariance  can  be  conclusively  held  to  be  true.  For  <•, 
we  shall  substitute  the  velocity  of  light  c  in  free  space. 

In  order  to  avoid  speaking  either  of  space  or  of  vacuum, 

we  may  take  this  quantity  as  the  ratio  between  the  electro 

static  and  electro-magnetic  units  of  electricity. 

We  can  form  an  idea  of  the  invariant  character  of  the 

expression  for  natural  laws  for  the  group-transformation 
G,  in  the  following  manner. 

Out  of  the  totality  of  natural  phenomena,  we  can,  by 

successive  higher  approximations,  deduce  a  coordinate 

system  (.»•,  y,  z,  t) ;  by  means  of  this  coordinate  system,  we 
can  represent  the  phenomena  according  1o  definite  laws. 

This  system  of  reference  is  by  no  means  uniquely  deter 

mined  by  the  phenomena.  We  can  change  the  system  of 

reference  in  any  possible  manner  corresponding  to  the  abore- 
meniioned  group  transformation  Gc,  bnt  the  expressions  for 

natural  laws  will  not  be  changed  thereby. 

For  example,  corresponding  to  the  above  described 

figure,  we  can  call  t'  the  time,  but  then  necessarily  the 
space  connected  with  it  must  be  expressed  by  the  mani- 
foldness  (,/  y  :).  The  physical  laws  are  now  expressed  by 

means  of  ,<•',  ?/,  :,  t1 ', — and  the  expressions  are  just  the 
same  as  in  the  case  of  .-,  y,  z,  t.  According  to  this,  we 

shall  have  in  the  world,  not  one  space,  but  many  spaces, — 

quite  analogous  to  the  case  that  the  three-dimensional 

space  consists  of  an  infinite  number  of  planes.  The  three- 

dimensional  geometry  will  be  a  chapter  of  four-dimensional 

physics.  Now  you  perceive,  why  I  said  in  the  beginning 
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that  time  and  .space  shall  reduce  to   mere   shadows   and    we 

shall  have  a  world  complete  in  itself. 

II 

Now  the  question  may  be  asked, — what  circumstances 

lead  us  to  these  changed  views  about  time  and  space,  are 

they  not  in  contradiction  with  observed  phenomena,  do 

they  finally  guarantee  us  advantages  for  the  description  of 

natural  phenomena  ? 

Before  we  enter  into  the  discussion,  a  very  important 

point  must  be  noticed.  Suppose  we  have  individualised 

time  and  space  in  a,ny  manner;  then  a  world-line  parallel 

to  the  £-axis  will  correspond  to  a  stationary  point  ;  a 

world-line  inclined  to  the  £-axis  will  correspond  to  a 

point  moving  uniformly  ;  and  a  world-curve  will  corres 

pond  to  a  point  moving  in  any  manner.  Let  us  now  picture 

to  our  mind  the  world-line  passing  through  any  world 

point  r,y,z,i;  now  if  we  find  the  world-line  parallel 

to  the  radius  vector  OA'  of  the  hyperboloidal  sheet,  then 

we  can  introduce  OA'  as  a  new  time-axis,  and  then 
according  to  the  new  conceptions  of  time  and  space  the 

substance  will  appear  to  be  at  rest  in  the  world  point 
concerned.  We  shall  now  introduce  this  fundamental 

axiom  : — 

Tin',  substance  <?</*//////  at  am/  worfil  point  can  always 

!,<•  fiiiK-fircil  to  be,  af  resf,  if  ice  «'.flatifix\\  vnr  lime  and 

space  Kiiifafj///.  The  axiom  denotes  that  in  a  world-point 

tho  expression 

,.*,/(.*  _,/.,-!  _,///'  _,/;* 

shall    always    be    positive   or    what    is    equivalent    to    the 

same  thing,  every  velocity   V    should    be    smaller    than    c. 

>hall    therefore    be    the    upper  limit    for    all    substantial 

velocities    and    herein    lies    a    deep     significance    for    the 
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quantity  <•.  At  the  first  impression,  the  axio: 

be  rather  unsatisfactory.  It  is  to  be  remembered  that 

only  a  modified  mechanics  will  occur,  in  which  the  square 

root  of  this  differential  combination  takes  the  place  of 

time,  so  that  cases  in  which  the  velocity  is  greater  than  c 

will  play  no  part,  something  like  imaginary  coordinates 

in  geometry. 

The  impulse  and  real  cause  of  inducement  for  tlie 

assumption,  of  the  yroup-kranisforniatioii  Gr  is  the  fact  that 

the  differential  equation  for  the  propagation  of  light  in 

vacant  spase  possesses  the  group- transformation  Gr.  On 

the  oth-3r  hand,  the  idea  of  rigid  bodies  has  any  sense 

only  in  a  system  mechanics  with  the  group  Gx.  Now 

if  we  have  an  optics  with  G,.,  and  on  the  other  h;'inl 

if  there  are  rigid  bodies,  it  is  easy  to  see  that  a 

/-direction  'can  be  defined  by  the  two  hyperboloidal 
shells  common  to  the  groups  Gx,  and  Gf,  which  Ins 

got  the  further  consequence,  that  by  means  of  suitable 

rigid  instruments  in  the  laborafory,  we  can  perceive  a 

change  in  natural  uhcnomena,  in  case  of  different  orienta 

tions,  with  regard  to  the  direction  of  progres-ive  motion 
of  the  earth.  But  all  efforts  directed  towards  this 

object,  and  even  the  celebrate!  interference-experiment 

of  Michelson  have  u'iven  negative  results.  In  order  to 

supply  an  explanation  for  this  result,  II.  A.  L.  rent/ 

formed  a  hypothesis  -vhich  practically  amounts  to  an 

invanance  of  optics  i'or  ihe  «;roup  G,..  Aeeordi 

Lorent/  every  substance  shall  Mifi'er  a  contraction 

1  •(     v    '~  ~       )  '"    ̂ 'll'-tn>   '"  the  direction  of  its  motion 
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l'in>  hypothesis  sounds  rather  phantastical.  For  the 
.rtion  is  nut  to  be  thought  of  as  a  consequence  of  tin; 

resistance  of  ether,  but  purely  as  a  gift  from  the  skies,  as  a 

sort  oF  condition  always  accompanying  a  state  of  motion. 

I  shall  show  in  our  figure  that  Lorentz's  hypothesis 
is  fully  equivalent  to  the  new  conceptions  about  time  and 

space.  Thereby  it  may  appear  more  intelligible.  Let  us 

now,  for  the  sake  of  simplicity,  neglect  (y,  z}  and  fix  our 

attention  on  a  two  dimensional  world,  in  which  let  upright 

strips  parallel  to  the  /-axis  represent  a  state  of  rest  and 

another  parallel  strip  inclined  to  the  /-axis  represent  a 

state  of  uniform  motion  for  a  body,  which  has  a  constant 

s:nti:il  extension  (see  fipf.'l).  IF  O.\'  is  parallel  to  the  second 

strip,  we  can  take  /'  as  the  /-axis  and  x'  as  the  *-axis,  then 
•ond  body  will  appear  to  be  at  rest,  and  the  first  body 

in  uniform  motion.  We  shall  now  assume  that  the  first 

body  supp  is,-  1  to  be  at  rest,  has  the  length  /,  i.e.,  the 

cross  seutidn  PP  of  the  first  strip  upon  the  ,  -axis  =  /'  OC, 
\vlu-re  OC  is  the  unit  measuring  rod  upon  the  s-axig  —  and 
the  second  bodv  also,  when  supposed  to  beat  rest,  has  the 

same  l.-u^th  /,  this  means  that,  the  cross  section  Q'Q'  of 

the  -e  .-oud  strip  has  :i  <Tnss-soct,ion  /'OC',  when  measured 

p;irall'-l  1  >  tin-  '-axis.  In  th  ;se  two  bodies,  we  have 

no\v  images  of  \\\-  •>  Lorentz-ele'ctr6bs,  one  of  which  ifl  a; 
rest  ;»nd  the  oilier  moves  iinifurinlx  .  Now  if  we  stick 

t.»  our  original  Coordinates,  then  the  extension  of  the 
iveii  ov  (lie  cross  section  (Id  of  the 

strip  lielon^iii'^  to  it  nie::sui-»-ii  p:-.  rallel  to  the  -;i\is. 

•Nov.  if  i|  ,-!,•;,!•  -iuc,.  (i'U'=r/()C'.  that  U(4  =  /'O1)'. 

If      if—1'"  ;in  (>;ls.v  falcnhtion  u'ives  that 

01)'  =  OC    x'        ,•-'     therefore 
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This  is  the  sense  of  Lorentz's  hypothesis  about  tlie 
contraction  of  electrons  in  case  of  motion.  On  the  other 

hand,  if  we  conceive  the  second  electron  to  be  at  rest, 

and  therefore  adopt  the  system  (*',  (' ',)  then  the  cross-section 

P'P'  of  the  strip  of  the  electron  parallel  to  OC'  is  to  be 
regarded  as  its  length  and  we  shall  find  the  first  electron 

shortened  with  reference  to  the  second  in  the  same  propor 

tion,  for  it  is, 

P^L_2H_°P  _  QQ 
CPQ?-OC/-OC  ~  PP 

Lorentz  called  the  combination  I'  of  (t  and  ,»)  as  the 
local  Li 'ne  (Ortszeil)  of  the  uniformly  moving  electron,  and 

used  a  physical  construction  of  this  idea  for  a  better  compre 

hension  of  the  contraction-hypothesis.  But  to  perceive 

clearly  that  the  time  of  an  electron  is  as  good  as  the  time 

of  any  other  electron,  i.e.  t,  t'  are  to  be  regarded  as  equi 
valent,  has  been  the  service  of  A.  Einstein  [Ann.  d. 

Phys.  891,  p.  1905,  Jahrb.  d.  Radis... 4-1-1 1— 1907]  There 
the  concept  of  time  was  shown  to  be  completely  and  un 

ambiguously  established  by  natural  phenomena.  But  the 

concept  of  space  was  not  arrived  at,  either  by  Einstein 

or  Lorentz,  probably  because  in  the  case  of  the  above- 

mentioned  spatial  transformations,  where  the  (./,  /')  plane 
coincides  with  the  •••-£  plane,  the  significance  is  possible 
that  the  ̂ -axis  of  space  some-how  remains  conserved  in 

its  position. 

We  can  approach  the  idea  of  space  in  a  corresponding 

manner,  though  some  may  regard  the  attempt  as  rather 
fantastical. 

According  to  these  ideas,  the  word  "  Relativity-Postu 
late"  which  has  been  coined  for  the  demands  of  invariance 

in  the  group  (r,  seems  to  be  rather  inexpressive  for  a  true 

understanding  of  the  group  Gf,  and  tor  further  progress. 
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Because  the  sense  of  the  postulate  is  that  the  four- 

dimensional  world  is  given  in  space  and  time  by  pheno 

mena  only,  but  the  projection  in  time  and  space  can 
be  handled  with  a  certain  freedom,  and  therefore  I  would 

rather  like  to  give  to  this  assertion  the  name  "  The 

Populate  of  the  Absolute  worM"  [World- Postulate]. 

Ill 

By  the  world-postulate  a  similar  treatment  of  the  four 

determining  quantities  x,i/t  z,  t,  of  a  world-point  is  pos 
sible.  Thereby  the  forms  under  which  the  physical  laws 

come  forth,  gain  in  intelligibility,  as  I  shall  presently  show. 

Above  all,  the  idea  of  acceleration  becomes  much  more 

striking  and  clear. 

I  shall  again  use  the  geometrical  method  of  expression. 

Let  us  call  any  world-point  O  as  a  "  Space-time-null- 

point."  The  cone 

consists  of  two  parts  with  O  as  apex,  one  part  having 

/<()',  the  other  having  />0.  The  first,  which  we  may  call 
f\\e  fore-cant'  consists  of  all  those  points  which  send  light 

towards  O,  the  second,  which  we  may  call  the  aft-cone. 
consists  of  all  those  points  which  receive  their  light  from 

O.  The  region  bounded  by  the  fore-cone  may  be  called 

the  fore-side  of  O,  and  the  region  bounded  by  the  aft-cone 

may  be  called  the  aft-side  of  O.  (Fide  fig.  :>). 

On  the  aft-side  of  O    -p    have   the   already   considered 

hyperboloidal  shell  F  =  rV    -  r2  -y*  -z"  =  1,  t>0. 
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Hie  region  inside  the  two  cones  will  be  ocoupibd  by  the 

hvperboloid  «f  one  sheet 

'    —  F=  •  s+j/'  +  v-2  —  ̂ t^—k-, 

where  £9  can  liave  all  possible  positive  values.  The 

hyperbolas  which  lie  upon  this  figure  with  O  as  centre, 

are  important  for  us.  For  the  sake  of  clearness  the  indivi 

dual  branches  of  this  hyperbola  will  be  called  the  "  Tnter- 

liyperbola.  with  centre  0."  Such  a  hyperbolic  branch, 
when  thought  of  as  a  world-line,  would  represent  a 

motion  which  for  /  =  —  °o  and  t  =  <x>,  asymptotically 

approaches  the  velocity  of  light  <•. 

If,  by  way  of  analogy  to  the  idea  of  vectors  in  space, 

we  call  any  directed  length  in  the  manifoldness  -,//,:,/  a 

vector,  then  we  have  to  distinguish  between  a  time-vector 
directed  from  O  towards  the  sheet  +  F  —  1,  />0  and  a 

space-vector  directed  from  O  towards  the  sheet  —  F  =  1. 
The  time-axis  can  be  parallel  to  any  vector  of  the  first 

kind.  Any  world-point  between  the  fore  and  aft  cones 

of  O,  mav  by  means  of  the  system  of  reference  be  regard --d 
either  as  synchronous  with  O,  as  well  as  later  or  earlier 

than  O.  Every  world-point  on  the  fore-side  of  O  is 
nece-ssarilv  always  earlier,  every  point  on  the  nft  side  of 

O,  later  thin  O.  Tin  limit  f  —  oa  corresponds  to  a  com 

plete  folding  up  of  fcbfe  wcdgc-shawd  cross-section  bet \\.v.i 
the.  fore  and  aft  cones  in  the  taanifoldofess  /  =  ().  In  the 

'figure  drawn,  this  cvos-s-scc!  ion  Ins  been  intentional!;- 
drawn  with  a  different  breadth. 

Let  us  decompose  a  vector  drawn  iV.>in  O  t "\\-ards 
(.r,//,/,/)  into  its  components.  If  the  directions  of  the  two 

ve<  tors  are  respectively  the  directions  of  the  radius  vector 

OR  to  one  of  tin-  surfaces  +F=l,find  of  a  tangt-nt  IIS 
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at  tin-  point  R  of  the    surface,  then    the    vectors    shall    be 
called    normal    to   each  other.     Accordingly 

which  is  the  condition  that  the  vectors  with  the  com 

ponents  (-,  y,  :,  /)  and  (fl  //  L  z^  /j)  are  normal  to  each 
other. 

For  the  measurement  of  vectors  in  different  directions, 

the  unit  measuring  rod  is  to  be  fixed  in  the  following 

manner;  —  a  space-like  vector  from  0  to  —  F  =  I  is  always 

to  have  the  measure  unity,  and  a  time-like  vector  from 

O  to  -|-  F=  1,  />()  is  always  to  have  the  measure  —  . 

Let  us  now  fix  our  attention  upon  the  world-line  of  a 

substantive  point  running  through  the  world-point  (r,  y, 

;,  1}  ;  then  as  we  follow  the  progress  of  the  line,  the 

quantity 

Vc*dt*  — dx*  — dy*  — dz* , c 

corresponds  to  the  time-like  vector-element  (dr,  dy,  dz,  dt}. 

The  integral  T=   I  dr,  taken  over   the    world-line  from 

any  fixed  initial  point  P(,  to  any  variable  final  point  P, 

may  be  called  the  "  Proper-time  "  of  the  substantial  point 
at  P0  upon  the  irnrlil-H.i*-.  We  may  regard  (r,  y,  :,  t],  I.e., 
the  components  of  the  vector  OP,  as  functions  of  the 

"  proper-time  "  T;  let  (.r,  //,  ?,  f)  denote  the  first  different  ial- 

((iiotifMts,  and  (.r,  //,  r,  /)  the  s(>cond  differential  quotients 

of   (   ,  '/,  :,  0  with  regard  to  T,  then  tlu'si-  may  respectively 
11 
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he    called    the    Velocity  -vector,  and    the    Acceleration-rector 

of  the  substantial  point  at  P.     Now  we  have 

2   t  'f—  X  ,'('  —y'y—'z  —  O         )  , 

i.e.,  the  '  Velocity  -vector  '  is  the  time-like  vector  of  unit 

measure  in  the  direction  of  the  world-line  at  P,  the  '  Accele 

ration-vector  '  at  P  is  normal  to  the  velocity-vector  at  P, 
and  is  in  any  case,  a  space-like  vector. 

Now  there  is,  as  can  be  easily  seen,  a  certain  hyperbola, 

which  has  three  infinitely  contiguous  points  in  common 

with  the  world-line  at  P,  and  of  which  the  asymptotes 

are  the  generators  of  a  '  fore-cone  '  and  an  '  aft-cone.' 

This  hyperbola  may  be  called  the  "  hyperbola  of  curvature  " 
at  P  (vide  tig.  3).  If  M  be  the  centre  of  this  hyperbola, 

then  we  have  to  deal  here  with  an  '  Inter-hyperbola  '  with 
centre  M.  Let  P  =  measure  of  the  vector  MP,  then  we 

easily  perceive  that  the  acceleration-vector  at  P  is  a  vector 

of  magnitude  — -  in  the  direction  of  MP. P 

If  r,  y,  z,  t  are  nil,  then  the  hyperbola  of  curvature 

at  P  reduces  to  the  straight  line  touching  the  world-line 

at  P,  and  p  =  <x . 

IV 

In  order  to  demonstrate  that  the  assumption  of  the 

group  Crr  for  the  physical  laws  does  not  possibly  lead  to 
anv  contradiction,  it  is  unnecessary  to  undertake  a  revision 

of  the  whole  of  physics  on  the  basis  of  the  assumptions 

underlying  this  group.  The  revision  has  already  been 

successfully  made  in  the  case  of  "  Thermodynamics  and 
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Radiation,"*    i'or    "Electromagnetic  phenomena  ",t     and 

linally  i'or  "Mechanics  with  the  maintenance  of  the  idea  of 

For  this  last  mentioned  province  of  physics,  the  ques 

tion  may  be  asked  :  if  there  is  a  force  with  the  components 

X,  Y,  Z  (in  the  direction  of  the  space-axes)  at  a  world- 

point  (x,  y}  z,  f),  where  the  velocity-vector  is  (f,    y,   z,    t), 

then  how  are  we  to  regard  this  force  when  the  system  of 

reference  is  changed  in  any  possible  manner  ?  Now  it  is 
known  that  there  are  certain  well-tested  theorems  about 

the  ponderomotive  force  in  electromagnetic  fields,  where 

the  group  Gr  is  undoubtedly  permissible.  These  theorems 

lead  us  to  the  following  simple  rule  ;  {/  the  system  of 

reference  be  changed  in  any  way,  then  the  supposed  force  is 

to  be  put  as  a  force  in  the  new  space-coordinates  in  such  n 

warmer,  that  the  corresponding  rector  with  the  components 

*X,  (?Y,  t'Z,  /T, 

where  T=—      (  -4-  X  -f  ~J-  Y  +  T-  Z^  =  l       (the    rate    of r1       \  /  t  t  c- 

irork  is  done  at  the  world-point},  remains  unaltered. 

This  vector  is  always  normal  to  the  velocity-vector  at  P. 

Such  a  force-vector,  representing  a  force  at  P,  may  be 

calk-il  a  inuriiiii  /'oro'-recfur  <it  P. 

X'»\v  the  world-line  passing  through  P  will  be  described 

1)\-  a  substantial  point  with  the  constant  mechaincut  ///</vv 

///.  Let  us  call  tn-ii>ii<'x  the  velocity-vector  at  P  as  the 

I'liiiii  k,  YAM-  Dynnmik  bcwrgtor  svRtemo,  Ann.  d.  physik,  Bd.  'JO, 
1908,  p.  1. 

t     II.  MinkoNvski  ;  the  ji:issn«,'o  refers  to    paper   (2)   of  the    present 
edition. 
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iwpuhe-r.er.tor,  and  m-times  the  acceleration-vector  at  P  as 

the  force-vector  of  motion,  at  P.  According  to  these 

definitions,  the  following  law  tells  us  how  the  motion  of 

a  point-mass  takes  place  under  any  moving  force-vector*  : 
The  force-vector  of  motion  is  equal  to  the  moving  force- 

vector. 

This  enunciation  comprises  four  equations  for  the  com 

ponents  in  the  four  directions,  of  which  the  fourth  cnn  be 

deduced  from  the  first  three,  because  both  of  the  above- 

mentioned  vectors  are  perpendicular  to  the  velocity-vector. 

From  the  definition  of  T,  we  see  that  the  fourth  simply 

expresses  the  "  Energy-law/'  Accordingly  cz -times  the 
component  of  the  impulse-vector  in  the  direction  of  the 

t-avis  is  to  be  defined  as  the  kinetic-energy  of  the  point- 
mass.  The  expression  for  this  is 

i.e.,  if  we  deduct  from  this  the  additive  constant  me2,  we 

obtain  the  expression  4  mv-  of  Newtonian-mechanics  upto 

magnitudes  of  the  order  of  — .     Hence  it  appears  that  the 

energy  depends  upon  the  xyxlcm  oj'  reference.  But  since  the 

/-axis  can  be  laid  in  the  direction  of  any  time-like  MM'S, 
therefore  the  energy-law  comprises,  for  any  possible  system 

of  reference,  thr>  whole  system  of  equations  of  motion. 
This  fact  retains  its  significance  even  in  the  limitinir  rase 

C  =  oo,  for  the  axiomatic  construction  of  Newtonian 

mechanics,  as  has  already  been  pointed  out  by  T.  R. 

Schiiix.t  ' 

*  Minkowski—  Mechanics,  appendix,  page  G.">  of  paper  (U). 
Planck    -\Vrh.  d.  I).  P.  (I.  Vol.  4,  1906,  p.  136 

f  St-hutz,  fiott.  Nuclir.  1897,  p.  110. 
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From  the  very  beginning,  we  can  establish  the  ratio 

between  the  units  of  time  and  space  in  such  a  nr.mner,  thai 

the  velocity  of  light  becomes  unity.  If  we  now  write 

\/~l  /  =  /,  in  the  place  of  /,  then  the  differentia]  expression 

,h  •-•  =  -  (dx  -  +  <ly a  +  ilz  *  +  ill  - ), 

becomes  symmetrical  in  (  ,  //,  .",  /) ;  this  symmetry  then 
enters  into  each  law,  which  does  not  contradict  the  worfit- 

jjoxtnlafe.  We  can  clothe  the  "essential  nature  of  this 
postulate  in  the  mystical,  but  mathematically  significant 
formula 

rH05frm=i'^l  Sec. 

The  advantages  arising  from  the  formulation  of  the 

world-postulate  are  illustrated  by  nothing  so  strikinglv 
as  by  the  expressions  which  tell  us  about  the  reactions 

exerted  by  a  point-charge  moving  in  any  manner  accord 

ing  to  the  Ma \\vell-Fjorentz  theory. 

Let  us  conceive  of  the  world-line  of  such  an  electron 

with  the  charge  (f),  and  let  us  introduce  upon  it  the 

"  Pr.'p  r-(ime  "  T  reckoned  from  any  possible  initial  point. 
In  order  to  obtnin  the  lieM  oau.-ed  bv  the  electron  at  anv 

world-point  I',  let  us  construct  the  fore-cone  belonging 

to  P,  (ridi'  tig.  4).  Clearly  this  etits  tin-  nnliinit-d 

world-line  of  the  electron  at  a  single  point  P,  because  these 
directions  are  all  time-like  vectors.  At  P,  let  us  draw  the 

tangent  to  the  world-line,  and  let  us  draw  from  P,  the 

normal  to  tin's  tangent.  Let  r  be  the  measure  of  P,Q. 
According  to  the  definition  of  a  fore-cone,  rfc  is  to  be 

reckoned  as  th«- measure  of  PU.  Now  at  the  world-point  P,, 
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the  vector-potential  of  the  field  excited  by  e  is  represented 

by  the  vector  in  direction  PQ.,  having  the  magnitude 

—    in  its  three  space  components  along  the  x-,  y-,    --axes ; 

the  scalar-potential  is  represented  by  the  component  along 

the  £-axis.  This  is  the  elementary  law  found  out  by 

A.  Lienard,  and  K.  "Wiechert.* 
If  the  field  caused  by  the  electron  be  described  in  the 

above-mentioned  way,  then  it  will  appear  that  the  division 

of  the  h'eld  into  electric  and  magnetic  forces  is  a  relative 
one,  and  depends  upon  the  time-axis  assumed  ;  the  two 
forces  considered  together  bears  some  analogy  to  the 

force-screw  in  mechanics  ;  the  analogy  is,  however,  im 

perfect. 

I  shall  now  describe  the  ponderonwlivc  force  which  is 

exerted  by  one  moving  electron  upon  another  moving  electron. 

Let  us  suppose  that  the  world-line  of  a  second  point- 

electron  passes  through  the  .world-point  Pj.  Let  us 

determine  P,  Q,  r  as  before,  construct  the  middle-point  M 

of  the  hyperbola  of  curvature  at  P,  and  finally  the  normal 

MN  upon  a  line  through  P  which  is  parallel  to  QPj. 

"With  P  as  the  initial  point,  we  shall  establish  a  system 
of  reference  in  the  following  way  :  the  /-axis  will  be  laid 

along  PQ,  the  a -axis  in  the  direction  of  QPj.  The  t?/-axis 

in  the  direction  of  MN,  then  the  r-axis  is  automatically 

determined,  as  it  is  normal  to  the  .'•-,  t/-,  ̂ -axes.  Let 

'1,'y,  z,  7  be    the    acceleration-vector    at    P,  .< ,,  yl}  z ,,  /, 

be  the  velocity- vector  at  P,.  Then  the  force-vector  exerted 
bv  the  first  election  e,  (moving  in  any  possible  manner) 

*  Lionard,  L'Eolnirnpi'  clcctriqne  T  10,  1896,  p.  '•:{. 
Wirchert,  Ann.  <1.  Pliysik,  Vol.  4. 
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upon    the    ><•(•< .mil    election    >-,    (likewise    moving    in    any 

1  o>>iblc  manner)  at  I',  is  represented  by 

For  the  components  FJt  7"7y,  F.,  F,   of  the   rector    F  the 
following  three  relations  hold  :  — 

and  fourthly  this  vector  F  is  normal  to  the  velocity-vector 

P,,  a  ltd  through  this  circumstance  alone,  its  dependence  on 

f/iis  laxf  relitcity-vector  arises. 

If  we  compare  with  this  expression  the  previous  for 

mula3*  giving  the  elementary  law  about  the  ponderomotive 
action  of  moving  electric  charges  upon  each  other,  then  we 

cannot  but  admit,  that  the  relations  which  occur  here 

reveal  the  inner  essence  of  full  simplicity  first  in  four 

dimensions  ;  but  in  three  dimensions,  they  have  very  com 

plicated  projections. 

In  the  mechanics  reformed  according  to  the  world- 

postulate,  the  disharmonies  which  have  disturbed  tin- 
relations  between  Newtonian  mechanics,  and  modern 

electrodynamics  automatically  disappear.  I  shall  now  con 

sider  the  position  of  the  Newtonian  law  of  attraction  to 

this  postulate.  I  will  assume  that  two  point-masses  m  and 

w,  describe  their  world-lines  ;  a  moving  force-vector  is 

exercised  by  m  upon  /#,,  and  the  expression  is  just  tin-  saun 
as  in  the  case  of  the  electron,  only  we  have  to  write 

+  >//;;/,  instead  of—  ee^.  We  shall  consider  only  the  special 
C;IM-  in  which  tlu-  acceleration-vector  of  in  is  always  zero  : 

*   K.  Sdiwar/.si-liild.     (iott-N'aclir.  1903. 

II.  A.  Lorcntz,  Ens/Uopidie  dor  Math.  \Vi.<.-i  iiM-haftm  V.  Art  14, 
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then  /  may  be  introduced  in  such  a  manner  that  m  may  be 
regarded  as  fixed,  the  motion  of  m  is  now  subjected  to  the 
moving-force  vector  of  m  alone.  If  we  now  modify  this 

given  vector  by  writing     f  -  i instead    of    / 

to  magnitudes  of  the  order    -j  ),    then      it    appears    that 

Kepler's  laws  hold  good  for  the  position  (r,,^,  zv),  of 
MI  at  any  time,  only  in  place  of  the  time  ll}  we  have  to 

write  the  proper  time  T,  of  ml.  On  the  basis  of  this 

simple  remark,  it  can  be  seen  that  the  proposed  law  of 
attraction  in  combination  with  new  mechanics  is  not  less 

suited  for  the  explanation  of  astronomical  phenomena  than 
the  Newtonian  law  of  attraction  in  combination  with 

Newtonian  mechanics. 

Also  the  fundamental  equations  for  electro-magnetic 

processes  in  moving  bodies  are  in  accordance  with  the 

world-postulate.  I  shall  also  show  on  a  later  occasion 
that  the  deduction  of  these  equations,  as  taught  by 

Lorentz,  are  by  no  means  to  be  given  up. 

The  fact  that  the  world-postulate  holds  without  excep 
tion  is,  1  believe,  the  true  essence  of  an  electromagnetic 

picture  of  the  world  ;  the  idea  first  occurred  to  Lorentz,  its 

essence  was  first  picked  out  by  Einstein,  and  is  now  gradu 

ally  fully  manifest.  In  course  of  time,  the  mathematical 

consequent's  will  be  gradually  deduced,  and  enough 
suggestions  will  be  forthcoming  for  the  experimental 

verification  of  the  postulate  ;  in  this  way  even  those,  who 

find  it  uncongenial,  or  even  painful  to  give  up  the  old, 

time-honoured  concepts,  will  be  reconciled  to  the  new  ideas 

of  time  and  space,— in  the  prospect  that  they  will  lead  to 

pre-established  harmony  between  pure  mathematics  and 

physics. 



The  Foundation  of  the  Generalised 

Theory  of  Relativity 

BY  A.  EINSTEIN. 

From  Annalen  der  Physik  4.49.1916. 

The  theory  which  is  sketched  in  the  following  pages 

forms  the  most  wide-going  generalization  conceivable  of 

what  is  at  present  known  as  "  the  theory  of  Relativity  ;  " 
this  latter  theory  I  differentiate  from  the  former 

"Special  Relativity  theory,"  and  suppose  it  to  be  known. 
The  generalization  of  the  Relativity  theory  has  been  made 

ranch  easier  through  the  form  given  to  the  special  Rela 

tivity  theory  by  Miukowski,  which  mathematician  was  the 

first  to  recognize  clearly  the  formal  equivalence  of  the  space 

like  and  time-like  co-ordinates,  and  who  made  use  of  it  in 

the  building  up  of  the  theory.  The  mathematical  apparatus 

useful  for  the  general  relativity  theory,  lay  already  com 

plete  in  the  "Absolute  Differential  Calculus/'  which  were 
based  on  the  researches  of  (jauss,  Riemaun  and  Christoffel 

on  the  non-Euclidean  manifold,  and  which  have  been 

shaped  into  a  system  by  Ricci  and  Levi-civita,  and  already 

applied  to  the  problems  of  theoretical  physics.  I  have  in 

part  B  of  this  communication  developed  in  the  simplest 

and  clearest  manner,  all  the  supposed  mathematical 

auxiliaries,  not  known  to  Physicists,  which  will  be  useful 

for  our  purpose,  so  that,  a  study  of  the  mathematical 

literature  is  not  necessary  lor  an  understanding  of  this 

paper.  Finally  in  this  place  I  thank  my  friend  Grossmann, 

by  whose  help  I  was  not  only  spared  the  study  of  the 

mathematical  literature  pertinent  to  this  subject,  but  who 

also  aided  me  in  the  researches  on  the  field  equations  of 

gravitation. 
It 
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PRINCIPAL  CONSIDERATIONS  ABOUT  THE  POSTULATE 
o*   RELATIVITY. 

§  1.    Remarks  on  the  Special  Relativity  Theory. 

The  special  relativity  theory  rests  on  the  following 

postulate  which  also  holds  valid  for  the  Galileo-Newtonian 
mechanics. 

Tf  a  co-ordinate  system  K  he  so  chosen  that  when  re 

ferred  to  it,  the  physical  laws  hold  in  their  simplest  forms 
these  laws  would  be  also  valid  when  referred  to  another 

system  of  co-ordinates  K'  which  is  subjected  to  an  uniform 
translational  motion  relative  to  K.  We  call  this  postulate 

"  The  Special  Relativity  Principle."  By  the  word  special, 
it  is  signified  that  the  principle  is  limited  to  the  case, 

when  K'  has  uniform  trandalory  motion  with  reference  to 
K,  but  the  equivalence  of  K  and  K'  does  not  extend  to  the 
case  of  non-uniform  motion  of  K'  relative  to  K. 

The  Special  Relativity  Theory  does  not  differ  from  the 

classical  mechanics  through  the  assumption  of  this  j>ostu- 

late,  but  only  through  the  postulate  of  the  constancy  of 

light-velocity  in  vacuum  which,  when  combined  with  the 

special  relativity  postulate,  gives  in  a  well-known  way,  the 

relativity  of  synchronism  as  well  as  the  Lorenz-transfor- 

mation,  with  all  the  relations  between  moving  rigid  bodie« 
and  clocks. 

The  modification  which  the  theory  of  space  and  time 

has  undergone  through  the  special  relativity  theory,  is 

indeed  a  profound  one,  but  a  weightier  point  remains 

untouched.  According  to  the  special  relativity  theory,  the 

theorems  of  geometry  are  to  be  looked  upon  as  the  laws 

about  any  jwssible  relative  positions  of  solid  bodies  at  rest, 

and  more  generally  the  theorems  of  kinematics,  as  theorems 
which  describe  the  relation  between  measurable  bodies  and 
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clocks.  Consider  two  material  points  of  a  solid  bodv  at 

rest  ;  then  according  to  these  conceptions  their  corres- 

jx>nd8  to  these  points  a  wholly  definite  extent  of  length, 

independent  of  kind,  position,  orientation  and  time  of  the 

body. 

Similarly  let  us  consider  two  positions  of  the  pointers  of 
a  clock  which  is  at  rest  with  reference  to  a  co-ordinate 

syetem  ;  then  to  these  positions,  there  always  corresponds, 

a  time-interval  of  a  definite  length,  independent  of  time 

and  place.  It  would  he  soon  shown  that  the  general  rela 

tivity  theory  can  not  hold  fast  to  this  simple  physical 

significance  of  space  and  time. 

§  2.    About  the  reasons  which  explain  the  extension 

of  the  relativity-postulate. 

To  the  classical  mechanics  (no  less  than)  to  the  special 

relativity  theory,  is  attached  an  episteomological  defect, 

which  was  perhai*  lirst  cleanly  pointed  out  by  E.  Mach. 
We  shall  illustrate  it  by  the  following  example  ;  Let 

two  fluid  bodies  of  equal  kind  and  magnitude  swim  freely 

in  space  at  such  a  great  distance  from  one  another  (and 

from  all  other  masses)  that  only  that  sort  of  gravitational 

forces  art-  to  be  taken  into  account  which  the  |>art«  of  any 

of  these  bodies  exert  UJKJII  each  other.  The  distance  of 

the  bodies  from  one  .another  is  invariable.  The  relative 

motion  of  the  different  parts  of  each  body  is  not  to  occur. 

But  each  mass  is  seen  to  rotate,  by  an  observer  at  rest  re 

lative  to  the  other  mass  round  the.  connecting  line  of  the 

masses  with  a  constant  angular  velocity  (definite  relative 

motion  for  both  the  masses).  Now  let  us  think  that  the 

surfaces  of  both  the  bodies  (S,  and  S8)  are  measured 

with  the  help  of  measuring  rods  (relatively  at  rest)  ;  it  is 

then  found  that  the  surface  of  S,  is  a  sphere  and  the 

•uiface  of  the  other  i*  an  ellipsoid  of  rotation.  We  now 
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ask,  why  is  this  difference  between  the  two  bodies  ''.  An 
answer  to  this  question  can  only  then  be  regarded  as  satis 

factory  from  the  episteomological  standpoint  when  the 

thing  adduced  as  the  cause  is  an  observable  fact  of  ex 

perience.  The  law  of  causality  has  the  sense  of  a  definite 

statement  about  the  world  of  experience  only  when 

observable  facts  alone  appear  as  causes  and  effects. 

The  Newtonian  mechanics  does  not  give  to  this  question 

any  satisfactory  answer.  For  example,  it  says  : — The  laws 
of  mechanics  hold  true  for  a  space  Rj  relative  to  which 

the  body  S,  is  at  rest,  not  however  for  a  space  relative  to 
which  S8  is  at  rest. 

The  Galiliean  space,  which  is  here  introduced  is  how 

ever  only  a  purely  imaginary  cause,  not  an  observable  thing. 

It  is  thus  clear  that  the  Newtonian  mechanics  does  not, 

in  the  case  treated  here,  actually  fulfil  the  requirements 

of  causality,  but  produces  on  the  mind  a  fictitious  com 

placency,  in  that  it  makes  responsible  a  wholly  imaginary 

cause  B,  for  the  different  behaviour?  of  the  bodies  S,  and 

Sa  which  are  actually  observable. 

A  satisfactory  explanation  to  the  question  put  forward 

above  can  only  be  thus  given  : — that  the  physical  system 
composed  of  St  and  Ss  shows  for  itself  alone  no  con 

ceivable  cause  to  which  the  different  behaviour  of  S,  and 

S,  can  be  attributed.  The  cause  must  thus  lie  outside  the 

system.  We  are  therefore  led  to  the  conception  that  the 

general  laws  of  motion  which  determine  specially  the 

forms  of  S,  and  S,  must  be  of  such  a  kind,  that  the 

mechanical  behaviour  of  S,  and  S,  must  be  essentially 

conditioned  by  the  distant  masses,  which  we  had  not 

brought  into  the  system  considered.  These  distant  masses, 

(and  their  relative  motion  as  regards  the  bodies  under  con 

sideration)  are  then  to  be  looked  upon  as  the  seat  of  the 

principal  observable  causes  for  the  different  behaviours 
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of  the  bodies  under  consideration.  They  take  the  place 

of  the  imaginary  cause  R,.  Among  all  the  conceivable 

spaces  Rt  and  Ra  moving  in  any  manner  relative  to  one 

another,  there  is  a  priori,  no  one  set  which  can  be  regarded 

as  affording  greater  advantages,  against  which  the  objection 

which  was  already  raised  from  the  standpoint  of  the 

theory  of  knowledge  cannot  be  again  revived.  The  laws 

of  physics  must  be  so  constituted  that  they  should  remain 

valid  for  any  system  of  co-ordinates  moving  in  any  manner. 

We  thus  arrive  at  an  extension  of  the  relativity  postulate. 

Besides  this  momentous  episteomological  argument, 

there  is  also  a  well-known  physical  fact  which  speaks  in 

favour  of  an  extension  of  the  relativity  theory.  Let  there 

be  a  Galiliean  co-ordinate  system  K  relative  to  which  (at 

least  in  the  four-dimensional- region  considered)  a  muss  at 
a  sufficient  distance  from  other  masses  move  uniformlv  in 

a  line.  Let  K'  be  a  second  co-ordinate  system  which  has 
a  uniformly  accelerated  motion  relative  to  K.  Relative  to 

K'  any  mass  at  a  sufficiently  great  distance  experiences 
an  accelerated  motion  such  that  its  acceleration  and  the 

direction  of  acceleration  is  independent  of  its  material  com 

position  and  its  physical  conditions. 

Can  any  observer,  at  rest  relative  to  K',  then  conclude 
that  he  is  in  an  actually  accelerated  reference-system  ? 

This  is  to  be  answered  in  the  negative  ;  the  above-named 

behaviour  of  the  freely  moving  masses  relative  to  K'  can 
be  explained  in  as  good  a  manner  in  the  following  way. 

The  reference-system  K'  has  no  acceleration.  In  the  space- 
time  region  considered  there  is  a  gravitation-field  which 

generates  the  accelerated  motion  relative  to  K.'. 
This  conception  is  feasible,  because  to  us  the  experience 

of  the  existence  of  a  field  of  force  (namely  the  gravitation 

field)  has  shown  that  it  possesses  the  remarkable  property 

of  imparting  the  same  acceleration  to  all  bodies.  The 
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mechanical  behaviour  of  the  bodies  relative  to  K'  is  the 

same  as  experience  would  expect  of  them  with  reference 

to  systems  which  we  assume  from  habit  as  stationary; 

thus  it  explains  why  from  the  physical  stand-point  it  can 

be  assumed  that  the  systems  K  and  K'  can  both  with  the 
same  legitimacy  be  taken  as  at  rest,  that  is,  they  will  be 

equivalent  as  systems  of  reference  for  a  description  of 

physical  phenomena. 

From  these  discussions  we  see,  that  the  working  out 

of  the  general  relativity  theory  must,  at  the  same  time, 

lead  to  a  theory  of  gravitation  ;  for  we  can  "  create  " 
a  gravitational  field  by  a  simple  variation  of  the  co-ordinate 

system.  Also  we  see  immediately  that  the  principle 

of  the  constancy  of  light-velocity  must  be  modified, 

for  we  recognise  easily  that  the  path  of  a  ray  of  light 

with  reference  to  K'  must  be,  in  general,  curved,  when 
light  travels  with  a  definite  and  constant  velocity  in  a 

straight  line  with  reference  to  K. 

§  3.  The  time-space  continuum.  Requirements  of  the 
general  Co-variance  for  the  equations  expressing 
the  laws  of  Nature  in  general. 

In  the  classical  mechanics  as  well  as  in  the  special 

relativity  theory,  the  co-ordinates  of  time  and  space  have 
an  immediate  physical  significance  ;  when  we  say  that 

any  arbitrary  point  has  .ri  as  its  X,  co-ordinate,  it  signifies 

that  the  projection  of  the  point-event  on  the  X,-axis 
ascertained  by  means  of  a  solid  rod  according  to  the  rules 

of  Euclidean  Geometry  is  reached  when  a  definite  measur 

ing  rod,  the  unit  rod,  can  be  carried  .c^  times  from  the 

origin  of  co-ordinates  along  the  Xi  axis.  A.  point  having 

st—t,  as  the  X4  co-ordinate  signifies  that  a  unit  clock 
which  is  adjusted  to  be  at  rest  relative  to  the  system  of 

co-ordinates,  and  coinciding  in  its  spatial  position  with  the 
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point-event  and  set  according  to  some  definite  standard  has 

gone  over  .<-4=J  periods  before  the  occurence  of  the 

point-event. 

This  conception  of  time  and  SIWLCC  is  continually  present 

in  the  mind  of  the  physicist,  though  often  in  an  unconsci 

ous  way,  as  is  clearly  recognised  from  the  role  which  this 

conception  has  played  in  physical  measurements.  This 

conception  must  also  appear  to  the  reader  to  be  lying  at 

the  basis  of  the  second  consideration  of  the  last  para 

graph  and  imparting  a  sense  to  these  conceptions.  But 

we  wish  to  show  that  we  are  to  abandon  it  aud  in  general 

to  replace  it  by  more  general  conceptions  in  order  to  be 

able  to  work  out  thoroughly  the  postulate  of  general  relati 

vity, — the  case  of  special  relativity  appearing  as  a  limiting 
case  when  there  is  no  gravitation. 

We  introduce  in  a  space,  which  is  free  from  Gravita 

tion-field,  a  Galiliean  Co-ordinate  System  K  (<,  y,  s,  t,)  and 

also,  another  system  K'  (.«'  y'  :'  t')  rotating  uniformly  rela 
tive  to  K.  The  origin  of  both  the  systems  as  well  as  their 

~-axes  might  continue  to  coincide.  We  will  show  that  for 

a  space-time  measurement  in  the  system  K',  the  above 
established  rules  for  the  physical  significance  of  time  aud 

space  can  not  be  maintained.  On  grounds  of  symmetry 

it  is  clear  that  a  circle  round  the  origin  in  the  XY  plane 

of  K,  can  also  be  looked  upon  as  a  circle  in  the  plaur 

(X',  Y')  of  K'.  Let  us  now  think  of  measuring  the  circum 
ference  aud  the  diameter  of  these  circles,  with  a  unit 

measuring  rod  (infinitely  small  compared  with  the  radius) 

and  take  the  quotient  of  both  the  results  of  measurement. 

If  this  experiment  be  carried  out  with  a  measuring  rod 

at  rest  relatively  to  the  Galiliean  system  K  we  would  ijet 

IT,  as  the  quotient.  The  result  of  measurement  with  a  rod 

relatively  at  rest  as  regards  K'  would  be  a  number  which 
is  greater  than  *.  This  can  be  seen  easily  when  we 
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regard  the  whole  measurement-process  from  the  system  K 

and  remember  that  the  rod  placed  on  the  periphery 

suffers  a  Lorenz-contraction,  not  however  when  the  rod 

is  placed  along  the  radius.  Euclidean  Geometry  therefore 

does  not  hold  for  the  system  K'  ;  the  above  fixed  concep 
tions  of  co-ordinates  which  assume  the  validity  of 

Euclidean  Geometry  fail  with  regard  to  the  system  K'. 

We  cannot  similarly  introduce  in  K'  a  time  corresponding  to 
physical  requirements,  which  will  be  shown  by  all  similarly 

prepared  clocks  at  rest  relative  to  the  system  K'.  In  order 
to  see  this  we  suppose  that  two  similarly  made  clocks  are 

arranged  one  at  the  centre  and  one  at  the  periphery  of 

the  circle,  and  considered  from  the  stationary  svstem 

K.  According  to  the  well-known  results  of  the  special 

relativity  theory  it  follows — (as  viewed  from  K) — that  the 

clock  placed  at  the  periphery  will  go  slower  than  the 
second  one  which  is  at  rest.  The  observer  at  the  common 

origin  of  co-ordinates  who  is  able  to  see  the  clock  at  the 

periphery  by  means  of  light  will  see  the  clock  at  the 

periphery  going  slower  than  the  clock  beside  him.  Since  he 

cannot  allow  the  velocity  of  light  to  depend  explicitly  upon 

the  time  in  the  way  under  consideration  he  will  interpret 

his  observation  by  saying  that  the  clock  on  the  periphery 

actully  goes  slower  than  the  clock  at  the  origin.  He 
cannot  therefore  do  otherwise  than  define  time  in  such 

a  way  that  the  rate  of  going  of  a  clock  depends  on  its 

position. 

We  therefore  arrive  at  this  result.  In  the  general 

relativity  theory  time  and  space  magnitudes  cannot  be  so 

defined  that  the  difference  in  spatial  co-ordinates  can  be 

immediately  measured  by  the  unit-measuring  rod,  and  time- 
like  co-ordinate  difference  with  the  aid  of  a  normal  clock. 

The  means  hitherto  at  our  disposal,  for  placing  our 

co-ordinate  system  in  the  time-space  continuum,  in  a 
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definite  way,  therefore  completely  fail  and  it  appears  that 

there  is  no  other  way  which  will  enable  us  to  fit  the 

co-ordinate  system  to  the  four-dimensional  world  in  such 

a  way,  that  by  it  we  can  expect  to  get  a  specially  simple 
formulation  of  the  laws  of  Nature.  So  that  nothing  remains 

for  us  but  to  repaid  all  conceivable  co-ordinate  systems 
as  equally  suitable  for  the  description  of  natural  phenomena. 

This  amounts  to  the  following  law: — 

That  in  general,  Laws  of  .\<if//re  are  expressed  ly  mean*  of 

equations  which  are  valid  for  till  co-ordinal  e  systems,  that  is, 

which  are  covariant  for  all  po*xi/j/<-  fraasfortudtioiU.  It  ig 
clear  that  a  physics  which  satisfies  this  postulate  will  be 

unobjectionable  from  the  standpoint  of  the  general 

relativity  postulate.  Because  among  all  substitutions 

there  are,  in  every  case,  contained  those,  which  correspond 

to  all  relative  motions  of  the  co-ordinate  system  (in 
three  dimensions).  This  condition  of  general  covariance 

which  takes  away  the  last  remnants  of  physical  objectivity 

from  space  and  time,  is  a  natural  requirement,  as  seen 

from  the  following  considerations.  All  our  icell-sntjstantiatfd 

space-time  propositions  amount  to  the  determination 

of  space-time  coincidences.  If,  for  example,  the  event 

consisted  in  the  motion  of  material  points,  then,  for  this 

last  case,  nothing  else  are  really  observable  except  the 

encounters  between  two  or  more  of  these  material  points. 

The  results  of  our  measurements  are  nothing  else  than 

well-proved  theorems  about  such  coincidences  of  material 

points,  of  our  measuring  rods  with  other  material  points, 

coincidences  between  the  hands  of  a  clock,  dial-marks  and 

point-events  occuring  at  the  same  position  and  at  the  same 
time. 

The  introduction  of  a  system  of  co-ordinates    serves    no 

other  purpose  than    an   easy  description  of   totality  of  such 

coincidences.     We   fit  to  the  world  our  space-time  variables 
IS 
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(.«!  ./•,  ,us  .c4)  such  that  to  any  and  every  point-event 
corresponds  a  system  of  values  of  (<.,  .. ,  ,  4).  Two  co 

incident  point-events  correspond  to  the  same  value  of  the 

variables  (./ ,  .<  s  ,r,s  .»:4)  ;  i.e.,  the  coincidence  is  cha 

racterised  by  the  equality  of  the  co-ordinates.  If  we  now 

introduce  any  four  functions  (.  ' l  •' %  .'3  .<-'4)  as  co 
ordinates,  so  that  there  is  an  unique  correspondence  between 

them,  the  equality  of  all  the  four  eo-ordinates  in  the  new 

system  will  still  be  the  expression  of  the  space-time 

coincidence  of  two  material  points.  As  the  purpose  of 

all  physical  laws  is  to  allow  us  to  remember  such  coinci 

dences,  there  is  a  priori  no  reason  present,  to  prefer  a 

certain  co-ordinate  system  to  another  ;  i.e.,  we  get  the 
condition  of  general  covariance. 

$  4.    Relation  of  four  co-ordinates  to  spatial  and 
time-like  measurements. 

Analytical  expression  for  the  Gravitation-field. 

I  am  not  trying  in  this  communication  to  deduce  the 

general  Relativity- theory  as  the  simplest  logical  system 

possible,  with  a.  minimum  of  axioms.  But  it  is  my  chief 

aim  to  develop  the  theory  in  such  a  manner  that  the 

reader  perceives  the  psychological  naturalness  of  the  way 

proposed,  and  the  fundamental  assumptions  appear  to  b« 

most  reasonable  according  to  the  light  of  experience.  In 

this  sense,  we  shall  now  introduce  the  following  supposition; 

that  for  an  infinitely  small  four-dimensional  region,  the 

relativity  theory  is  valid  in  the  special  sense  when  the  axes 

are  suitably  chosen. 

The  nature  of  acceleration  of  an  infinitely  small  (posi 

tional)  co-ordinate  system  is  hereby  to  be  so  chosen,  that 

the  gravitational  field  does  not  appear;  this  is  possible  for 

au  infinitely  small  region.  X,,  X,,  X,  are  the  apmtiaJ 
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co-ordinates  ;  Xt  is  the  corresponding  time-co-ordinate 

measured  by  some  suitable  measuring  clock.  These  co 

ordinates  have,  with  a  given  orientation  of  the  system,  an 

immediate  physical  significance  in  the  sense  of  the  special 

relativity  theory  (when  we  take  a  rigid  rod  as  our  unit  of 

measure).  The  expression 

had  then,  according  to  the  special  relativity  theory,  a  value 

which  may  be  obtained  by  space-time  measurement,  and 

which  is  independent  of  the  orientation  of  the  local 

co-ordinate  system.  Let  us  take  '/.«  as  the  magnitude  of  the 

line-element  belonging  to  two  infinitely  near  points  in  the 

four-dimensional  region.  If  ds*  belonging  to  the  element 
(r/X,  dXt,  ̂ X3,  ̂ X4)  be  positive  we  call  it  with  Minkowski, 

time-like,  and  in  the  contrary  case  space-like. 

To  the  line-element  considered,  i.e.,  to  both  the  infi 

nitely  near  point-events  belong  also  definite  differentials 

(I  <  ,  ,  d<  ,  .  dxs,  d'\,  of  the  four-dimensional  co-ordinates  of 

any  chosen  system  of  reference.  If  there  be  also  a  local 

system  of  the  above  kind  given  for  the  case  under  consi 

deration,  '/X's  would  then  be  represented  by  definite  linear 
homogeneous  expressions  of  the  form 

*2)  dX   =2  a    d.r V  (T    V<T        (T 

If  we  substitute  the  expression  in  (1)  we  get 

where  g      will  be  functions  of  .<•  ̂   but  will  no  longer  depend 

upon  the  orientation  and  motion  of  the  'local'  co-ordinates; 
for  d*'  is  a  definite  magnitude  belonging  to  two  point- 

events  infinitely  near  in  space  and  time  and  can  be  got  by 
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measurements  with  rods  and  clocks.     The   g     's  are  here  to 

be    so   chosen,    that   n     =  n      ;   the   summation    is  to  be "or     rw 

extended  over  all  value?  of  o-  and  r,  so  that  the  sum  is  to 
be  extended  over  4x4-  terms,  of  which  12  are  equal  in 

pairs. 

From  the  method  adopted  here,  the  case  of  the  usual 

relativity  theory  comes  out  when  owing  to  the  special 

behaviour  of  g  in  a  finite  region  it  is  possible  to  choose 'the 

system  of  co-ordinates  in  such  a  way  that  g ̂   assume* 

constant  values — 

f     -1,      0,      0,      0 

0-100 
(*) 

00-10 

ooo+i 

We  would  afterwards  sec  that  the  choice  of  such  a  system 

of  co-ordinates  for  a  finite  region  is  in  general  not  possible. 

From    the   considerations    in   §  2    and    §  X    it  is  clear, 

that  from  the  physical  stand-point  the  quantities  g     are  to 

.be  looked  upon  as  magnitudes  which  describe  the  gravita 

tion-field  with  reference  to  the  chosen  system  of  axes. 

We  assume  firstly,  that  in  a  certain  four-dimensional 
region  considered,  the  special  relativity  theory  is  true  for 

some  particular  choice  of  co-ordinates.  The  g  '&  then 

have  the  values  given  in  (I).  A  free  material  point  moves 

with  reference  to  such  a  system  uniformly  in  a  straight- 

line.  If  we  now  intro:lu3J,  by  u'.iy  substitution,  the  space- 

time  co-ordinates  .r,  .  ...r4,  then  in  the  new  system  g  's  are 

no  longer  constants,  but  functions  of  space  and  time.  At 

the  same  time,  the  motion  of  a  free  point-mass  in  the  ne.w 
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co-ordinates,  will  appear  as  curvilinear,  and  not  uniform,  in 

which  the  law  of  motion,  will  be  iwiependetd  of  the 

ini.fii.rr  nl'  I  In-  innrJ,i<i  nt<txx-])uinl*.  We  can  thus  signify  this 
motion  as  on*-  under  the  influence  of  a  gravitation  field. 

We  see  that  the  appearance  of  a  gravitation-field  is  con 

nected  with  space-time  variability  of  g  's.  In  the  general 

case,  we  can  not  by  any  suitable  choice  of  axes,  make 

special  relativity  theory  valid  throughout  any  finite  region. 

We  thus  deduce  the  conception  that  y  's  describe  the 

gravitational  field.  According  to  the  general  relativity 

theory,  gravitation  thus  plays  an  exceptional  role  as  dis 

tinguished  from  the  others,  specially  the  electromagnetic 

forces,  in  as  much  as  the  10  functions  g  representing 

gravitation,  define  immediately  the  metrical  properties  of 

the  four-dimensional  region. 

MATHEMATICAL  AUXILIARIES  FOR  ESTABLISHING  THE 
GENERAL  COVARIANT  EQUATIONS. 

We  have  seen  before  that  the  general  relativity-postu 

late  leads  to  the  condition  that  the  system  of  equations 

for  Physics,  must  be  co-variants  for  arnr  possible  substitu 
tion  of  co-ordinates  .-  , ,  .  ,  :  \ve  have  now  to  see 

how  such  general  co- variant  equations  can  be  obtained. 

\Vr  shall  now  turn  our  attention  to  these  purely  mathemati 

cal  pro  positions.  Ft  will  be  shown  that  in  the  solution,  the 

invariant  ifs,  given  in  <'tjiiat.ion  (:})  plays  a  fundamental 

role,  which  \vr.  following  (iau-Vs  Theory  of  Surfaces, 

style  as  the  line-element. 

The  fundamental  idea  of  the  general  co-variant  theorv 

is  this  : — With  reference  to  any  co-ordinate  system,  let 
certain  tiling  (tensors)  be  defined  by  a  number  of  func 

tions  of  co-ordinates  which  are  called  the  components  of 
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the  tensor.  There  are  now  certain  rules  according  to  which 

the  components  can  be  calculated  in  a  new  system  of 

co-ordinates,  when  these  are  known  for  the  original 

system,  and  when  the  transformation  connecting  the  two 
systems  is  known.  The  things  herefrom  designated  as 

u  Tensors  "  have  further  the  property  that  the  transforma 
tion  equation  of  their  components  are  linear  and  homogene 

ous  ;  so  that  all  the  components  in  the  new  system  vanish 

if  they  are  all  zero  in  the  original  system.  Thus  a  law 

of  Nature  can  be  formulated  by  puttjng  all  the  components 

of  a  tensor  equal  to  zero  so  that  it  is  a  general  co-variant 
equation  ;  thus  while  we  seek  the  laws  of  formation  of 

the  tensors,  we  also  reach  the  means  of  establishing  general 
co- variant  laws. 

5.      Contra-variant  and  co-variant  Four-vector. 

Contra-variant  Four-vector.    The  line-element  is  denned 

by  the    four   components  d.-'v   whose   transformation    law 

is  expressed  by  the  equation V. 

<*>  "'-=*„  T^   ",.  . 
The  d<'  ',<  are  expressed  as  linear  and  homogeneous  func 

tion  of  <l>  '*  ;  we  can  look  upon  the  differentials  of  the 

co-ordinates  as  the  components  of  a  tensor,  which  we 

designate  specially  as  a  contravariant  Four-vector.  Every 

thing  which  is  defined  by  Four  quantities  A  ,  with  reference 

to  a  co-ordinate  system,  and  transforms  according  to 
the  same  law, 
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we  may  call  a  contra-variant  Four-vector.  From  (5.  a), 

it  follows  at  once  that  the  sums  (A  4  B  )  are  also  com 

ponents  of  a  four-vector,  when  \a  and  B'T  are  so  ;  cor 
responding  relations  hold  also  for  all  systems  afterwards 

introduced  as  "  tensors  "  (Rule  of  addition  and  subtraction 
of  Tensors). 

Co-r<inanf- 

We  call  four  quantities  A  as  the  components  of  a  co- 

variant  four-vector,  when  for  any  choice  of  the  contra- 

variant  four  vector  B  (6)  ̂   A  B  •=  Invm-ianL 

From  this  definition  follows  the  law  of  transformation  of 

the  co-variant  four-vectors.  If  we  substitute  in  the  right 

hand  side  of  the  equation 

the  expressions 

e-v 

for  Bv    following  from  the    inversion  of  the  equation   (5») 
we  get 

a 
B^  5       -^    A     =5       B"  A 

<T     _  ~      V        ,  —  nO*    A  » 

<r 

<7 

As  in  the  above  equation  BCT  are  independent  of  one  another 
and  perfectly  arbitrary,  it  follows  that  the  transformation 

law  is  : — 
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Remarks  on  the  simplification  <>f  tl/c  mode  of  wriliny 

the  expressions.  A  glance  at  the  equations  of  this 

paragraph  will  show  that  the  indices  which  appear  twice 

within  the  sign  of  summation  [for  example  v  in  (5)]  are 
those  over  which  the  summation  is  to  be  made  and  that 

only  over  the  indices  which  appear  twice.  It  is  therefore 

possible,  without  loss  of  clearness,  to  leave  off  the  summation, 

sign  ;  so  that  we  introduce  the  rule  :  wherever  the 

index  in  any  term  of  an  expression  appears  twice,  it  is  to 

be  summed  over  all  of  them  except  when  it  is  not  oxpress- 

edly  said  to  the  contrary. 

The  difference  between  the  co-variant  and  the  contra- 

variant  four- vector  lies  in  the  transformation  laws  [  (7) 

and  (5)].  Both  the  quantities  are  tensors  according  to  the 

above  general  remarks  ;  in  it  lies  its  significance.  In 

accordance  with  Ricci  and  Levi-civita,  the  contravariants 

and  co-variants  are  designated  by  the  over  and  under 
indices. 

§  6.    Tensors  of  the  second  and  highei  ranks. 

Contravariant  tensor  : — If  we  now    calculate  all  the    Ifi 

products  A^v  of   the  components    A^    Bv   ,    of  two   con- 
trava riant  four-  vectors 

f8)  A^  =  A^B* 

A'*",  will   according  to  (8)  and  (ft  a)  satisfy  the   following 
transformation  law. 

6  *'      8 .- ' 
(9)  A"   =    3-?      g-I    A"" 

We  call  a  thing  which,  with  reference  to  any  reference 

system  is  defined  by  16  quantities  and  fulfils  the  transfor 

mation  relation  (9),  a  contra  variant  tensor  of  the  second 
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rank.  Not  every  such  tensor  can  be  built  from  two  four- 

vectors,  (according  to  8).  But  it  is  easy  to  show  that  any 

16  quantities  A^v,   can    be    represented   as  the  sum  of  A 

Bv  of  properly  chosen  four  pairs  of  four-vectors.  From  it, 
we  can  prove  in  the  simplest  way  all  laws  which  hold  true 

for  the  tensor  of  the  second  rank  defined  through  (9),  by 

proving  it  only  for  the  special  tensor  of  the  type  (8). 

Contravariant  Tensor  of  any  rank  : — If  is  clear  that 

corresponding  to  (8)  and  (9),  we  can  define  contravariant 

tensors  of  the  3rd  and  higher  ranks,  with  43,  etc.  com- 
l>onents.  Thus  it  is  clear  from  (8)  and  (9)  that  in  this 

sense,  we  can  look  upon  contravariant  four-vectors,  as 
contravariant  tensors  of  the  first  rank. 

Co-variant  tensor, 

If  ou  the   other  hand,  we  take  the  16  products  A^   of 

the   components    of   two   co. variant   four- vectors   A     and 

for  them  holds  the  transformation  law 

Q'u       8'rv 
<">  ^r    =-97/67;,  V 

By  means  of  these  transformation  laws,  the  co-variant 
tensor  of  the  second  rank  is  defined.  All  re-marks  which 

we  have  already  made  concerning  tbe  contravariaut  tensors, 
hold  also  for  co-variant  tensors. 

Remark  : — 

It  is  convenient   to   treat  the  scalar   Invariant    either 

as  a  contravariant  or  a  co-variant  tensor  of  zero  rank. 
14 
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Mixed   tensor.      We   can    also    define  a  tensor  of   the 

second  rank  of  the  type 

(12)  A     =  A  BV 
P.          P- 

which  is  co-variant  with  reference  to  p.  and  contravariant 
with  reference  to  v.     Its  transformation  law  is 

Naturally  there  are  mixed  tensors  with  any  number  of 

co-  variant  indices,  and  with  any  number  of  contra-  variant 
indices.  The  co-variant  and  contra-variant  tensors  can  be 

looked  upon  as  special  cases  of  mixed  tensors. 

tensors  : — 

A  contravariant  or  a  co-variant  tensor  of  the  second 

or  higher  rank  is  called  symmetrical  when  any  two  com 

ponents  obtained  by  the  mutual  interchange  of  two  indices 

are  equal.     The   tensor  A ̂     or  A   ̂   is  symmetrical,  when 

we  have  for  any  combination  of  indices 

(14)  A^W7* 

(14a)  A     =A 
p.V  Vfi 

It  must  be  proved  that  a  symmetry  so  defined  is  a  property 
independent  of  the  system  of  reference.  It  follows  in  fact 

from  (9)  remembering  (14-) 

i       9  .<•  -  9  .T  Q  ,i   ,    Q  ,»•  , 
.or       a-  T      >p.v    a  T      /.vu.      .TO- 

-  e,,,   e.v        '  a,,,   8,; 
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Anti-til  iniii''lri<-nl 

A  contravariant  or  co-variant  tensor  of  the  2nd,  3rd  or 

4th  rank  is  called  <iiifi*i/nnit<>trical  when  the  two  com 

ponents  got  by  mutually  interchanging  any  two  indices 

are  equal  and  opposite.     The  tensor    A.1*"  or  A   ̂   is      thus 

antisymmetrical  when  we  have 

(15)  A^  =  -A^ 

(15a) 

Of   the    16    components    A"  ,  the    four   components  A 
vanish,  the  rest  are    equal  and    opposite  in    pairs  ;    so   that 

there  are  only  6  numerically  different   components    present 

(Six-rector). 

Thus  we  also  see  that  the  antisymmetrical  tensor 

A!*""  (3rd  rank)  lias  only  4-  components  numerically 

different,  and  the  antisymmetrioal  tensor   A  only    one. 

Symmetrical    tensors   of    ranks   higher  than  the  fourth,  do 

not  exist  in  a  continuum  of  4-  dimensions. 

§  7.    Multiplication  of  Tensors. 

On/ft-  i)ii(/(iji/n-<iti<>/i  of  T''iix,n-x  : — \Vc  ̂ ct  from  the 
components  of  a  tensor  of  rank  :,  and  another  of  a  rank 

c',  the  components  of  a  tensor  of  rank  (r-fc')  for  which 
we  multiply  all  the  components  of  the  first  with  all  the 

components  of  the  second  in  pairs.  Fur  example,  we 
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obtain  the  tensor  T  from  the  tensors  A  and  B  of   different 

kinds  :  — 

T        =  A      B 
UV<T  flV         (T 

The  proof  of  the  tensor  character  of  T,  follows  imme 

diately  from  the  expressions  (8),  (10)  or  (12),  or  the 

transformation  equations  (9),  (11),  (18)  ;  equations  (S), 

(10)  and  (12)  are  themselves  examples  of  the  outer 

multiplication  of  tensors  of  the  first  rank. 

Reduction  in  rank  of  a  mixed  Tensor. 

From  every  mixed  tensor  \ve  can  get  a  tensor  which  is 

two  ranks  lower,  when  we  put  an  index  of  co-variant 

character  equal  to  an  index  of  the  contravariant  character 

and  sum  according  to  these  indices  (Reduction).  We  get 

for  example,  out  of  the  mixed  tensor  of  the  fourth  rank 

sv 

A      ,  the  mixed  tensor  of  the  second  rank 

8  a8      / 

A     =A     =(SA a         \ ft      \a      aft 

and  from  it  again  by  "  reduction  "    the   tensor   of  the  zero 
rank 

.0         .«/* A=  A     =  A 
ft  aft 

The  proof  that  the    result  of  reduction    retains  a   truly 

tensorial  character,   follows  either  from  the   representation 
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of  tensor  according  to  the  generalisation  of  (1~)  in    combi 

nation  with  (H)  or  out  of  the  generalisation  of  (13). 

Imier  a<ul  mixed  multiplication  of  Tensors. 

This  consists  in  the  combination  of  outer  multiplication 

with  reduction.  Examples  :— From  the  co-variant  tensor  of 
the  seconj.1  rank  A  and  the  contravariant  tensor  of 

the    first  rank     B     we    get    by   outer    multiplication    the 
mixed  tensor 

B"
 

Through    reduction    according  to    indices  v  and  o-  (i.e.,  put 
ting  i'  =  <r),  the  co-variant  four  vector 

D     =  D      =  A       B     is  generated. 
/*  .v  /" 

These    we   denote    as  the    inner   product  of  the  tensor  A  v 

and  B     .     Similarly  we  get  from  the   tenters  A     and  B 

ILV 

through   outer    multiplication    and  two-fold  reduction    the 

inner  product  A      B^    .     Through    outer     multiplication 

and  one-fold    reduction  we  get  out  of  A       and   B  the 

mixed    tensor   of  the    second  rank    D      =  A       B     .       \Ve 

can  fitly  Pall  this  operation  a  mixed  one  ;  for  it  is  outer 

with  reference  to  the  indices  M  and  rt  and  inner  with 

respect  to  the  indices  v  and  o-. 
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We  now  prove  a  law,  which  will  be  often  applicable  for 

provingthe  tensor-character  of  certain  quantities.  According 

to  the  above  representation.  A      B^vis  a  scalar,  when  A P-V  /JLV 

and  B     are  tensors.  We  also  remark  that  when  A       B^'  is 

an  invariant  for  everv  choice  of  the  tensor  B^v,  then  A 

(Of 

has  a  tensorial  character. 

Proof  :  —  According  to  the  above    assumption,    for   any 
substitution  we  have 

A    ,      B"     =  A OT  fJiV 

From  the  inversion  of  (9)  we  have  however 

o  &      o  */*  / 

Substitution  of  this  for  B^"  in  the  above  equation  ̂ i 

A  8%      9^     A A     ,     —          r  -    A 
°"r  8  .»'    f    8-'y  / 

This  can  be  true,  for  any  choice  of  B  only  when 

the  term  within  the  bracket  vanishes.  From  which  by 

referring  to  (11),  the  thtorem  at  once  follows.  This  law 

correspondingly  holds  for  tensors  of  any  rank  and  character. 

The  proof  is  quite  similar,  The  law  can  also  be  put  in  the 

following  from.      If   B^   and    C*    are  any  two  vectors,  and 
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if  for  every  choice  of  them  the  inner  product  A       B     C 

is  a  scalar,    then  A       is   a   co-variant   tensor.      The     last 

py 

law  holds  even  when  there  is  the  more  special  formulation, 

that  with  any  arbitrary  choice  of  the  four-vector  B"  alone 

the  scala:  product  A  B'*  Bv  is  a  scalar,  in  which  case 

we  have  the  additional  condition  that  A  satisfies  the 

symmetry  condition.  According  to  the  method  given 

above,  we  prove  the  tensor  character  of  (A  v  +  ̂ v  },  from 

which  on  Account  of  symmetry  follows  the  tensor-character 

of  A  .  This  law  can  easily  be  generalized  in  the  case  of 

co-variant  and  contravariant  tensors  of  any  rank. 

Finally,  from  what  has  been  proved,  we  can  deduce   the 

following  law  which  can  be  easily  generalized  for  any  kind 

of  tensor  :     If  the  qualities'  A       B     form  a  tensor  of  the 

first  rank,  when  B  is  any  arbitrarily  chosen  four-vector, 

then  A  v  is  a  tensor  of  the  second  rank.  If  for  example, 

C'1  is  any  four-vector,  then  owing  to  the  tensor  character 

of  A  n  B1  ,  the  inner  product  A  v  C^  B1'  is  a  scalar, 

both  the  four-vectors  C^  and  B  being  arbitrarily  chosen. 
Hence  the  proposition  follows  at  once. 

A  few  words  about  the  Fundamental  Tensor  // 
U.V 

The  co-variant  fundamental    tensor — In    the    invariant 

expression  of  the    square  of  the  linear  element 

<lx-  =7       df     1 1. 1 
M*       /* 
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A  A  plays  the  role  of  any  arbitarily  chosen  contravariant 

vector,  since  further  g  y=ffv  ,  it  follows  from  the  consi 

derations  of  the  last  paragraph  that  g  is  a  symmetrical 

co-variant  tensor  of  the  second  rank.  We  call  it  the 

"  fundamental  tensor."  Afterwards  we  shall  deduce 

some  properties  of  this  tensor,  which  will  also  be  true  for 

any  tensor  of  the  second  rank.  But  the  special  role  of  the 

fundamental  tensor  in  our  Theory,  which  has  its  physical 

basis  on  the  particularly  exceptional  character  of  gravita 
tion  makes  it  clear  that  those  relations  are  to  be  developed 

which  will  be  required  only  in  the  case  of  the  fundamental 
teusor. 

The  co-variant  fundamental  tensor. 

If   we   form  from  the   determinant  scheme  |  g  v  |  the 

minors  of  g  yand  divide  them  by  the  determinat  ^  =  j  y^  \ 

we  get  certain  quantities  f*  —  gv^ ,  which  as  we  shall 
prove  generates  a  contra  variant  tensor. 

According  to  the  well-known  law  of  Determinants 

(16)     g        /a=8 

/XO
" 

where   S      is  1,  or  0,    according  as  /*  =  v   or  not.      Instead 

of  the  above  expression  for  rf.»2,  we  can  also  write 

V  6V   rf  V  ̂
'" 

or  according  to  (16)  also  in  the  form 

0T   .  * 

a        a      a      (M       •/  • 
ytt«7  JVT  *  U.  V 
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Now    according    to   the   rules  of  multiplication,  of  the 

fore-going  paragraph,  the  magnitudes 

p.<T          fJL 

foims  a   co-variant   four-  vector,   and  in    fact  (on  account 

of  the  arbitrary  choice  of  d<      )  any  arbitrary    four-vector. 

If  we  introduce  it  in  our  expression,  we  get 

For  any  choice  of  the  vectors  d£    d)   this  is  scalar,  and 

y*"",  according  to  its  defintibn  is  a   symmetrical    thing  in  a 

and  r,  so  it  follows  from  the  above  results,  that  g        is   » 

contravariant  tensor.     Out  of  (16)  it  also  follows  that  8 
^ 

is  a  tensor  which  we    may    call    the    mixed    fundamental 
tensor. 

Determinant  of  the  fundamental  tensor. 

According  to  the  law  of  multiplication  of  determinants, 
we  have 

On  the  other  hand  we  have 

So  that  it  follows  (17)  that  \9  v\    I/" 
15 
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of  ruin  me. 

We  see  K  first  the  transformation  law  for  the  determinant 

0=  |  0  v  1  .     According  to  (11) 

dx       6-c U  V 

9, 

9  = 
6,v  a,v  -/- 

From  this  by  applying  the  law  of    mutiplication    twice, 
we  obtain. 

9*, 

F 

H-
 

a^ 

rf.r    / 

V7f  = 

_j* 

v-, 

°" 

...     (A) 

On    the   other    hand    the    law    of   transformation    of    the 
volume  element 

is  according  to  the  wellknown  law  of  Jacobi. 

dtl 

dr'  = 

...     (B) 

by  multiplication  of  the  two  last  equation    (A)  and  (B)    we 

get. 
(18) =<Sf     dr'^V     dr. 

lusted  of  v/^-,  we  shall  afterwards  introduce  \/~g 
which  has  area!  value  on  account  of  the  hyperbolic  character 

of  the  time-space  continuum.  The  invariant  ̂ /—gdr,  is 
equal  in  magnitude  to  the  four-dimensional  volume-element 
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measured    with    solid   rods    and    clocks,  in  accordance  with 

the  special  relativity  theory. 

Remark*  on  the  character  of  Hie  space-time  continuum — 

Our  assumption  that  in  an  infinitely  small  region  the 

special  relativity  theory  holds,  leads  us  to  conclude  that  ds- 
can  always,  according  to  (1)  be  expressed  in  real  magni 

tudes  fJX,...<JX  .  If  we  call  dra  the  "  natural  "  volume 
element  rfXt  </X2  dX3  dX4  we  have  thus  (18a)  tlr* 

Should  Y/  — g  vanish  at  any  point  of  the  four-dimensional 

continuum  it  would  signify  that  to  a  finite  co-ordinate 
volume  at  the  place  corresponds  an  infinitely  small 

"  natural  volume."  This  can  never  be  the  case  ;  so  that  g 
can  never  change  its  sign;  we  would,  according  to  the  special 

relativity  theory  assume  that  g  has  a  finite  negative 

value.  It  is  a  hypothesis  about  the  physical  nature  of  the 

continuum  considered,  and  also  a  pre-established  rule  for 
the  choice  of  co-ordinates. 

If  however  (—  g)  remains  positive  and  finite,  it  is 
clear  that  the  choice  of  co-ordinates  can  be  so  made  that 

this  quantity  becomes  equal  to  one.  We  would  afterwards 
see  that  such  a  limitation  of  the  choice  of  co-ordinates* 

would  produce  a  significant  simplification  in  expressions 
for  laws  of  nature. 

In  place  of  (18)  it  follows  then  simply  that 

dr'  =  d 

from  this  it  follows,  remembering  the  law  of  Jacobi, 

-—    =1. 



116  PRINCIPLE    OF   RELATIVITY 

With  this  choice  of  co-ordinates,  only  substitutions  with 
determinant  1,  are  allowable. 

It  would  however  be  erroneous  to  think  that  this  step 

signifies  a  partial  lenunciation  of  the  general  relativity 

postulate.  We  do  not  seek  thoj=e  laws  of  nature  which  are 

co- variants  with  regard  to  the  Iran  formations  having 
the  determinant  1,  but  we  ask  :  what  are  the  general 

co-variant  laws  of  nature  ?  First  we  get  the  law,  and  then 

we  simplify  its  expression  by  a  special  choice  of  the  system 
of  reference. 

Building  up  of  new  tensor*  with  the  help  of  the  fundamental 
tensor. 

Through  inner,  outer  and  mixed  multiplications  of  a 
tensor  with  the  fundamental  tensor,  tensors  of  other 
kinds  and  of  other  ranks  can  be  formed. 

Example  : — 

We  would  point  out  specially  the  following  combinations: 

A     —  <f     g      A  n 

ap 

A     =g     g      Aaft 

(complement   to   the,  co-variant  or  contravariant  tensors) 

and,  B     —  o      Q      A  a 

We  can  call  B      the  reduced  tensor  related  to  A 
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Similarly 
,-V/AV 
B 

a/3 

It  is  to  be  remarked  that  f*  is  no  other  than  the  "  com 

plement  "  of  y   v  ,  for  we  have,  — 

ua     vB  S  p-v 
Q       Q      9   o~  9       *>      —  9      • y      y      v         J   a 

§  9.    Equation  of  the  geodetic  line 

(or  of  point-motion). 

At  the  "  line  element  "  ds  is  a  definite  magnitude  in 
dependent  of  the  co-ordinate  system,  we  have  also  between 

two  points  Pt  and  P2  of  a  four  dimensional  continuum  a 

line  for  which  />/•?  is  an  extremum  (geodetic  line),  i.e.,  one 

which  has  got  a  significance  independent  of  the  choice  of 
co-ordinates. 

Its  equation  is 

(20) 

From  this  equation,  we  can  in  a  wellknown  way 

deduce  4  total  differential  equations  which  define  the 

geodetic  line  ;  this  deduction  is  given  here  for  the  sake 

of  completeness. 

Let  X,  be  a  function  of  the  co-ordinates  xv  ;  This 

defines  a  series  of  surfaces  which  cut  the  geodetic  line 

sou^ht-for  as  well  as  all  neighbourin<r  lines  from  P,  to  P3. 

We  can  suppose  that  all  such  curves  are  given  when  the 

value  of  its  co-ordinates  ^  are  given  m  terms  of  X.  The 
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sign    S   corresponds    to   a    passage   from    a    point   of    the 

geodetic   curve    sotight-for    to    a    point  of   the  contiguous 

curve,  both  lying  on  the  same  surface  A.. 

Then  (20)  can  be  replaced  by 

u (20») dx     dxy 

^   l       ~9fJiV  ~(j\      ~rfX 
But 

«LlL 2   a, 

So  we  get  by  the  substitution  of   8w  in    (20a),    remem 

bering  that (  ii>'v  ̂   a 
H  — -  /=—  (8-iv^ 

after  partial  integration, X., 

(20b) 
J d\  k     So;     =0 o-       o- 

a.'/A 
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From    which  it  follows,  since  the  choice  of  8.<-      is    per 

fectly  arbitrary  that  k^  '*  should  vanish  ;    Then 

(20c)  ka  =0  (o-=l,  2,  3,  4) 

are  the  equations  of  geodetic  line  ;  since  along  the 

geodetic  line  considered  we  have  ̂ ,<?=/=0,  we  can  choose  the 

parameter  A,  as  the  length  of  the  arc  measured  along  the 

geodetic  line.  Then  w  =  l,  and  we  would  get  in  place  of 

(20c) 

•  V    8**        8.<-        8*       8* <r 

_i    av  8  V   ar«-  _0 

Or  by  merely  changing  the  notation  suitably, 

<ZV  _     _  (L-         (ft 

(20d)     ga(f       t-a  -4-  K"     -^  .    ~  =0 

where  we  have  put,  following  Christoffel, 

(9i\       F/xvl    *    I        '  M0"^       '  vcr          '  P-v~\ 
'  S       a*        a~~  ~  ~ai       ' LO-  J  L    O     v  fi 

Multiply  finally  (20d)  with  0*™  (outer  multiplication  with 
reference  to  T,  and  inner  with  respect  to  rr)  we  get  at 

last  the  final  form  of  the  equation  of  the  geodetic  line — 

- 

ds* 
Here

  
we  have 

 
put, 

 
follo

wing 
 
Chris

toffe
l, 
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§  10.    Formation  of  Tensors  through  Differentiation. 

Relying  on  the  equation  of  the  geodetic  line,  we  can 

now  easily  deduce  laws  according  to  which  new  tensors  can 

be  formed  from  given  tensors  by  differentiation.  For  this 

purpose,  we  would  first  establish  the  general  co-variant 

differential  equations.  We  achieve  this  through  a  repeated 

application  of  the  following  simple  law.  If  a  pertain 

curve  be  given  in  our  continuum  whose  points  are  character 

ised  by  the  arc-distances  s.  measured  from  a  fixed  point  on 
the  curve,  and  if  further  <£,  be  an  invariant  space  function, 

then       —    is  also  an  invariant.     The   proof   follows    from 

the  fact  that  d<j>  as  well  as  ds,  are  both  invariants 

Since     £  =     9*     |> ds          Qx        9  * 

a  ,        d. 
so  that  i£  =    5^—  .     —  —  is  also  an  invariant  for   all  curves 

which    go   out   from   a   point   in    the  continuum,    i.e.,    for 

any  choice  o] 

diately  that. 

any  choice  of  the  vector  d  c     .     From  which    follows   imme 

/* 

A  =1* 

.  Vj 

is  a  co-variant  four-vector  (gradient  of  <£). 

According  to   our  law,  the   differential-quotient  x=  — 

taken  along  any  curve  is  likewise  an  invariant 

Substituting  the  value  of  iff,  we  get 

d-              dr.                            d** 
O    <P                      /*                 v     .      o  <P                   A4 

v=     — r    7^         .   ^    .        — —     +    — —    •      • 
A        Q.,     9,  d*  d»  9-  «• M        *  f1 
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Here  however  we  cannot  at  once  deduce  the  existence 

of  any  tensor  It'  we  however  tiikc  that  the  curves  along 
which  we  are  differentiating  are  geodesies,  we  pet  from  it 

dfx 

by  replacing   --  -   according  to  (4J'J 

=  r    aa^_  -  ̂v)  -9* I  3*  9-'v       <-  r  >    9-«T 

From    the    interrliangeability  of  the  differentiation    with 

regard  to  ̂   and  v,  and  also  according  to  (2o)  and  (21 )  svc  iin- 

\  M1'  J that  tlie  bracket  -    is   symmetrical    with   respect   to   u. 
(T  ) 

and  t-. 

As  we  can  draw  ;t  uvoilrt  ic  line  in  any  direction  from  any 

point  in  the    continuum.          'x  is  thus  a  four-vector,  with  an 

arbitrary    ratio    of    components.    M»  that  it   follows  from  Mir 

results  of  §7  that 

(25) 

is  a  co- variant  tensor  of  the  second  rank.    We  have  thus  got 

the  result  that  out  of  the  co-variant  tensor    ot  the  tirst    rank 

A    =    "-^      we  can  get   I>V  differentiation  a  co-\ariant    tensor 

of  2nd  rank 

V=    6/ 

16 
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W»>    call    rhe  tensor  A      the  "  extension  "    «>f  the  tensor 

ta> 

A  .  Then  we  can  easily  show  that  this  combination  also 

leads  to  a.  tensor,  when  the  vector  A  is  not  repvesentable 

us  a  gradient.  In  order  to  see  this  we  first  remark  that 

\^  ~~  is  a  co-variant  four-vector  when  \L  and  <£  are 

scalars.     This    i>    uiso   the  case   for   a   sum   of   four   such 

terms  :  — 

when    i/rd),    <j>(l)...\f/(*)  <£(*)    are   scalar*.     Now   it  is  however 

clear   that    every   co-variant    four-vector  is  j-epresentable  in 
the   form   of  S 

P- 

If  for  example,  A  is  a  fonr- vector  whose  components 

are  any  given  functions  of  x  ,  we  have,  (with  reference  to 

the  chosen  co-ordinate  system)  only  to  pat 
=  A, 

in  order  to  arrive  at  the  result  that  S       is  equal  to  A     . V-  P 

In  order  to  prove  then  that  A  in  a  tensor  when  on  the 

right  side  of  (26Nt  we  substitute  any  co-variant  four-vector 
for  A  we  have  only  to  show  that  this  is  true  for  the 
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four-  vector  S     .     For  this  latter,  case,  howevtjr,  a  glance  on 

the  right  hand  side  of  (26)    will  nhow  that    we  have  only  to 
bring  forth  the  proof  for  the  case  when 

Now  the  right  hand  side  of  (25)  multiplied  by  i/'  is 

which    has   a   tensor  character.     Similarly,    ~*       f  *      is 

also  a  tensor  (outer  product  of  two  four-  vectors). 

Through  addition  follows  the  tensor  character  of 

Thus    we   get   the    desired    proof    for    the    four-vector, 
•S     l 

\1/  ££-    and  hence  f«->r  any  four-  vectors    A      as  shown  above. 

With  the  help  of  the  extension  of  the  four-  vector,  we 

can  easily  define  ''extension''  of  a  co-variant  tensor  of  any 
i-ank.  This  is  a  generalisation  of  the  extension  of  the  four- 
vector.  We  confine  ourselves  to  the  case  of  the  extension 

of  the  tensors  of  the  2nd  rank  for  which  the  law  of  for 

mation  can  be  clearly  seen. 

Aft  already  remarked  every  co-variant  tensor  of  th^  2nd 
rank  can  be  represented  as  a  sum  of  the  tensors  of  the  type 
A  B  . 
fi  V 
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It  would  therefore  be  sufficient  to  deduce  the  expression 

of  extension,  for  one  such  special  tensor.  According  to 

(26)  we  have  the  expressions 

8  A        (     ) 

9  ̂    -   (    r  )   ̂ 

are    tensors.      Through    outer    multiplication    of    the    first 

with  B     and    the    2nd  -with    A       we    get    tensors   of    the 

third   rank.     Their   addition    gives  the  tensor  of   the  third 

rank 

A         -         /xv-  A     -  J  av      A V"  srr 

where  A  y  is  put=A  B^,  .  The  right  hand  side  of  (27) 

is  linear  and  homogeneous  with  reference  to  A  .  and  its 

first  differential  co-efficient  so  that  this  law  of  formation  leads 

to  a  tensor  not  only  in  the  case  of  a  tensor  of  the  type  A 

B      but    also    in    the    case    of    a   summation    for    all    such 

tensors,    i.e..,    in    the   case   of   any    co-variant   tensor  of   the 

second  rank.  We  call  A         the  extension  of  the  tensor  A     . 
p.va  /iv 

It  is  clear  that  (26)  and  (24)  are  only  special  cases  of 

(27)  (extension  of  the  tensors  of  the  tirst  and  zero  rank). 

In  general  we  can  get  all  specinl  Ijtws  of  formation  of 

tensors  from  (27)  combined  with  tensor  multiplication. 
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Some  special  cases  of  Particular  Importance. 

A  f'-ic  inuiJiai'n  It'miiia*  con<:rr,iui<i  lite  fundamental 
t«n*<',-.  W<>  shall  first  deduce  some  of  tin-  h-mnms  much  xised 

ut'fci  -\\ards.  According  to  the  law  of  differentiation  uf 
determinants,  we  have 

28)  ,,9  =  /V^v=-f//xv  ̂ /V- 

Tlu-    la.-t  foi-ni    follows  From    tho  first  when  we  remember 
that 

,/        ,fv  =  tiL  ,  and   there  fun-  ,-/     gfa'  = 
ULV  U.V 

consequently;/      fly**1  +  >j^v  <l<i 

From  (28),  it  folhnvn  that 

~t    i'^  (-r/)  _,,/••     V 
6.        -^      6,, 

/"•  6- 

Again,  since  ̂     /  <j      —^     ,  we  havi-,  Ity  differentiation, 

vcr 

—  (/ 

a,-. 

(30)   - 
 01 

By  mixed  multiplication  with   (j         nnd    ;/ 

we  obtain  (Hwn^inir  the  mode  of  wntinir  the 
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Id  ftv=-  Pa  <VP  d< 

(31) 

Q7~         ~;/         ̂   Va/S 

I      ' 

V 
p.-  p.w          K^, 

(32) 

, 

Tlio   expression    (31)    allows  a  transformation    which  we 

shall  often  use ;  according  to  (21) 

If  we    substitute    this  in  the    second  of  the  foi-mula  (31). 

we  get,  remembering  (23). 

By  substituting   the   right-hand    side  of  (H4)  in  (29),  we 

get 
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nf  ///>'  eo^tfavoriani  four^vcctor, 

Let  u>  multiply  i  ii'»  )  with  the  conttavariani   fandanumta] 

ten-Mir  if    (inner  mult  ijilicittion').    then    l»v  ;t 

of  the  firnt  incjn^ci1.  th«'  ritrlit-lianrl  side  tnkes  the  form 

;,a_V    r. 
8'  8-'         ' 

According    to    (.'U  )    ;nul    (-'.*).    th»«  lust  member  cun 
the  form 

Both  the  first  members  of  the  exj)rcssion  (B),  and  the 

second  member  of  the  expression  (A)  cancel  each  other. 

since  the  naming  of  the  summation-indices  i«  immaterial. 

The  laHt  meiuhei-  of  (B;  cun  then  he  united  with  first  of 

(A).  If  we  put 

where    A*    as  well  as  A      are  vectors  which  «-an    be    »trbi- M 

trarily  chosen,  we  obtain  finally 

9 

-"  A" 
a 

This    scalar    is    the  Di'vcrym-'    ut  the  contra  variant  four- 

vector  AV  , 
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ttnfdiin,/  a/'  t/tc  (covarianfy  fjouy»vectof, 

Tin-  seron.l  iiHMiiiifi    in  :!>»'•)  iv  -\  mmetrical  in  the    indict 

u,  and  v.     Hence  A     —  A        is    an    antisymmetrical    tensor 
/    f  p.*        vp. 

built  up  iu  a  vrry  simple  niainier.      \Ve  ol)tain 

a  A      9  A 
(36)  B     =     -    /x  - 

t>f  ii  Six-vector. 

Jf  we    apply    the    operation    ('27)  on  an    nntisynimetrical 

tensor  of  tht-  sri-ond  I'jink    A     .  ;uid  form    all    the    equations 

pr 

arising  from  the  cyclic*  interchange  of  the  indices  /x,  v.  <r,  and 
add  all  them,  we  obtain  a  tensor  of  thr  third  rank 

a  A 
(.37)  B         =A          4-  A         +  A         =   -—  ̂  

/Aj'ir  fiver  V<TJJ.  ir/j.v  Q<T 

from  which  it  is  easy  to  see  that  the  tensor  is    antisymmetri- 

eal. 

<-/>   nf  tfir   S 

If  (27)  is  multiplied  by  <^°'  f]V  (  mixed  multiplicjition), 
then  a  tensor  is  obtained.  Tho  tirst  member  of  the  right 

hand  side  of  (27)  can  be  written  in  the  form 

6  A 

a,(r 
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If  we    rc,d:iee   /"    '/'^.\  I'v  A"^.   /"    v'^  A  hy /"•<r  ,r  /'M  J 

A        and  rojthicc  in  llic  ti-insforiiind  first  inoinliop 

^'/i,,,,,    9-""" 9",  9-V 

with  tlio  help  of  (^M-),  then  from  tlie  right-hand  side  of  (27) 

t  here  arises  ;xn  expression  with  seven  terms,  of  which  four 

t-ancel.  '1'here  remnifis 

This  is  the  expression  for  the  ext  elision  of  n  contra  variant 

of  the  second  rank  :  extensions  can  also  he  formed  I'm 

em-responding  cont  ravariant  tensors  of  higher  and  lower 

ranks. 

We    remark    that  in  the  same   way.  we  can  also  form  the 

extension  of  a  mixed  tensor    A 

9A"         i,     ,)  (,     r) 

(:>':h  A   '      ~  ''      ~  'V      +   /  A         ' 

15\    the    reduction    of  (US)    with  reference    to  the  indices 

^tr  v 

/i  -tnd   tr  (     inner 
   

multip
licati

on    
 

with  
 
£      I  ,  we  tret    a    con- V  ft  / 

t ravariant  four- vector 

9 

17 
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v     of    -  with On     tlu1     ;iccouiit     of     flic     svmiiirtrv 

(      "    ) 
reference    to    the    indices    (3.  and  K.  the  third  member  of  tht 

right  hand  side  vanishes  when  Au"  is  an  antisymrnetrical 
tensor,  which  we  assume  here  ;  the  second  member  can  be 

transformed  according  to  (29a)  ;  we  therefore  get 

A  a    _       i         o  I  v  — a  j 

(4°)  :  7^~~8^7 p 

This   is    the    expression    of   the    divergence  of  a  oontra- 

variant  six-vector. 

of  t//f  t//ic<:il  ti'/i.wr  of  i/ie  second  rank. 

Let  us  form    the   reduction  of    (89)  with  reference  to  the 

indices  a  and  <r,  we  obtain  remembering  (29;i) 

If    we    introduce    into    the    last    term    the  contravnriant 

tensor     Ap<r  =  r/^T  A     ,  it  takes  the  form T 

-[">-»    A-. 
L  ̂         J 

If  further  A^*7  is  symmetrical  it  is  reduced  t<> 
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If  instead  <>i  A:  .  «»•  introduce  in  ;i  >imilar  way  the 

symmetrical  co-variant  tensor  A  ̂   —g  a  </  «  A°"  .  then 
owing  to  (31)  the  last  member  can  take  the  form 

-,j         A 
J      8  r          f*r 

In  the  symmetrical  case  treated,  (41)  can  be  replaced   by 

-it  her  of  the  forms 

•  I  In. 

(  /-j  A'  ) 
' 

which  we  snail  have  to  make  use  of  afterwards. 

$12.    The  Riemann-Christoffel  Tensor. 

\Ve    now    seek    only    those    tensors,    which    can    be 

obtained  from  the  fundamental  tensor  ̂  \by  differentiation 

alone.     It   is  found  ea-il\  .     Wo  ]>ut    in    (27)    instead    of 

i-    A'"'   tin-  fundamental  t«-nsor  //'"    and  i^et  from 
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it  a  new  tensor,  namely  the  extension  of  the  fundamental 

tensor.  We  can  easily  convince  ourselves  that  this 

vanishes  identically.  We  prove  it  in  the  following  way;  we 
substitute  in  (27) 

8  A          (^ 

[IV  Q    j:  /  \  P 

f  r  (^p     J 

i.e.,  the  extension  of  a  four- vector. 

Thus    we    get    (by    slightly  changing  the  indices)  the 
tensor  of  the  third  rank 

^       _  /'   _  )      r   P  _  y  'T  r         p  _  \ (TT  f     _p 
/xtrr   a  .'-a-     /•    ija,'- "     ;0  (a-      )n  (  a..- 

6, 

Wre  use  these  expressions  for  the  formation  of  the  ten>ur 

A         — A       .     Thereby    the     following    terms  in  A 
/AOT  I>.T(T  fJ(TT 

cancel  the  corresponding  terms  in  A  ̂ ;  the  iirst  member, 

the  fourth  member,  as  well  as  the  member  corresponding 

to  tlie  last  term  within  the  square  bracket.  These  are  all 

symmetrical  in  <r,  and  T.  The  same  is  true  for  the  sum  of 
the  second  and  third  members.  We  thus  get 

A          -  A        =  ttp        A     . 
/iOT  /ATO"  fJUTT  p 

/HOT 
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The  essential  thing  in  this  result  is  that  on  the 

right  hand  nde  of  ( 1:2)  we  have  only  A  ,  but  not  its 

differential  C0r»efficientf.   From  the  tensor-character  of   A 

fi(TT 

—  A         ,  and  from  the  fact  that   A      is  an  arbitrary   four 
flTO-   '  p 

vector,  it  follows,  on  account  of  the  result  of  §7,  that 

B  is  a  tensor  (Kiemann-Christoffel  Tensor). 
fUTT 

The  mathematical  significance  of  this  tensor  is  as 

follows;  when  the  continuum  is  so  shaped,  that  there  is  a 

co-ordinate  system  for  which  y  's  are  constants,  Bp  all 
[1.V  /XCTT 

vanish. 

If  \ve  choose  instead  of  the  original  co-ordinate  system 

any  new  one,  so  would  the  </  's  referred  to  this  last  system 

be  no  longer   constants.      The   tensor    character    of    B'' 

/XCTT 

shows  us,  however,  that  these  components  vanish  collectively 

also  in  any  other  chosen  system  of  reference.  The 

vanishing  of  the  Kiemann  Tensor  is  thus  a  necessary  con 

dition  that  for  -some  choice  of  the  axis-system  y  V  can  be 

taken  a>  constant^  In  our  problem  it  corresponds  to  the 

case  when  by  a  suitable  choice  of  the  co-ordinate  system, 

the  special  relativity  theory  holds  throughout  any  finite 

region.  By  the  reduction  of  (1-3)  with  reference  to  indicc> 

to  r  and  p,  we  get  the  covarinnt  tensor  of  the  second  rank 
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ti/io/t  I  In-  c/io/ce  o/'  co-ordinoti-cs.  —  It  has  alrcadv 
been  remarked  in  §8,  with  reference  to  the  equation  (18a), 

that  the  co-ordinates  can  with  advantage  be  so  choseu  that 

x/—  0  =  !•  A  glance  at  the  equations  got  in  the  last  two 
paragraphs  shows  that,  through  such  a  choice,  the  law  of 

formation  of  the  tensors  suffers  a  significant  simplifica 

tion.  It  is  specially  true  for  the  tensor  B  ,  which  plays 

a  fundamental  role  in  the  theory.  By  this  simplifica 

tion,  S  vanishes  of  itself  so  that  tensor  B  reduces  to 
/it'  fJLV 

R     . 

/J.V 

I  shall  give  in  the  following  pages  all  relations  in  the 

simplified  form,  with  the  above-named  specialisation  of 

the  co-ordinates.  It  is  then  very  easy  to  go  back  to  the 

general  covariant  equations,  if  it  appears  desirable  in 

any  special  case. 

C.  THE  THEORY  OF  THE  GRAVITATION-FIELD 

§13.  Equation  of  motion  of  a  material  point  in  a 

gravitation-field.  Expression  for  the  field-components 
of  gravitation. 

A  freelv  moving  body  not  acted  on  by  external  torcr- 
moves,  according  to  the  special  relativity  theory,  along  a 

straight  line  and  uniformly.  This  also  holds  for  the 

generalised  relativity  theory  for  any  part  of  the  four-dimen 
sional  region,  in  which  the  co-ordinates  K,,  can  be,  and 

are,  so  chosen  that  //  's  have  special  constant  values  of 

the  expression  (4). 

Let  us  discuss  this  motion  from  the  stand-point  of  any 

arbitrary  co-ordinal O-M -stem  K;:  it  moves  with  reference  to 

K,  (as  explained  in  §2)  in  a  gravitational  field.  The  la\\> 
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of  motion'  With  reference  to  K,  follow  easily  from  the 
following  consideration.  \Yith  reference  to  K,,,  the  law 

of  motion  is  a  four-dimenfcional  straight  lino  and  tlm*  a 

geodesic1.  As  a  geodetic-line  is  defined  independently 
of  the  system  of  oo-ordinates,  it  would  also  be  the  law  of 

motion  for  the  motion  of  the  material-point  with  reference 

to  K!  ;  If  we  put 

v=  -  T  ̂ 

we  get  tho    motion    of    the   point    with    reference    to    K 

jjiven  by 

J   'if.  ./         dx 
__T  =rT      /( 
,/X»       "  /'l'        »/s-  </> 

\\'e  now  make  the  very  simplo  assumption  that  this 

general  oovariant  system  oi'  equations  defines  also  the 
motion  of  the  point  in  the  gravitational  Held,  when  there 

exists  no  reference-system  K,,,  with  reference  to  which 

the  special  relativity  theory  holds  throughout  a  finite 

region.  The  assumption  seems  to  us  to  be  all  the  more 

legitimate,  as  (1(5)  contains  only  the  first  differentials  of 

//  ,  among  which  there  is  no  relation  in  the  special  case 

when  K,,  exists. 

If  r T  's   vanish,  the  point  moves  uniformlv    and    in    a 

/*" 
straight  line;  these  magnitudes  therefore  determine  the 

deviation  from  uniformity.  They  are  the  components  of 

the  gravitational  field. 
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§14.     The  Field-equation  of  Gravitation  in  the 
absence  of  matter. 

In  the  following,  we  differentiate  gravitation-field  from 

matter  in  the  sense  that  everything  besides  the  gravita 

tion-field  will  be  signified  :is  matter  :  therefore  the  term 

includes  not  only  matter  in  the  usual  sense,  but  also  the 

electro-dynamic  field.  Our  next  problem  is  to  seek  the 

Reid-equations  of  gravitation  in  the  absence  of  matter.  For 

this  we  apply  the  same  method  as  employed  in  the  fore 

going  paragraph  for  the  deduction  of  the  equations  of 

motion  for  material  points.  A  special  case  in  which  the 

field-equations  sought-for  are  evidently  satisfied  is  that  of 

the  special  relativity  theory  in  which  </  's  have  certain 

constant  values.  This  would  be  the  case  in  a  certain 

finite  region  with  reference  to  a  definite  co-ordinate 

>vstem  K,,.  With  reference  to  this  system,  all  the  com 

ponents  B/J  of  the  Riemann's  Tensor  ("equation  \:> 
vanish.  These  vanish  then  also  in  the  region  considered. 

with  reference  to  every  other  co-ordinate  system. 

The  equations  of  the  gravitation-field  free  from    matter 

must  thus  be  in  everv  case  satisfied  when  all  B^          vanish. 

P.<TT But  this  condition  is  clearly  one  which  goes  too  far.  For 

it  is  clear  that  the  gravitation-field  generated  by  a  material 

point  in  its  own  neighbourhood  can  never  be  transformed 

,111;, t/  by  any  olioiiv  of  a\«-s,  i.e.,  it  cannot  be  transformed 

to  a  case  of  constant  ft  's. 

Therefore  it  i>  clear  that,    for   a  gravitational  field  free 

from    matter,    it    is    desirable    that    the    symmetrical    ten- 

BOW     H        deduced    from    the  tensors    1^      should  vanish. 
.v  r- 
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\\ethu-iget    1  (I  equations  for  1  0  quantities //         which    are 

fulfilled  in  the  special  case  when  IV     V  all  vanish. 

Remembering  (  I  I)  we  see  that  in  absence  of  matter 

the  field-equations  come  out  as  follows  ;  (when  referred 

to  ihe  special  co-ordinate-system  chosen.) er;" 

It  fan  also  he  shown  that  the  ohoiee  of  these  equa 

tions  is  connected  with  a  minimum  of  arbitrariness.  For 

liesides    l>      ,  there    is   no  tensor  of  the  second  rank,  which 

/"'' 
can  lie  built  out  of  //      's    and   their  derivatives   no    higher 

/"' 

than  the  second,  and  which  is  also  linear  in  them. 

It  will  be  shown  that  the  equations  arising  in  a,  purely 

mathematical  wa\  out  of  the  conditions  of  the  general 

relativity,  together  with  equations  (Hi),  givo  us  the  Xe\\- 

loman  law  of  attraction  as  a  tirst  approximation,  and  lead 

in  the  second  approximation  t<>  the  explanation  of  the 

perihelion-motion  of  mercury  diseovertd  by  Leverrier 

(the  residual  ellect  which  could  not  be  accounted  for  by 

the  consideration  of  all  sorts  of  disturbing  factors).  My 

view  is  that  these  are  convincing  proofs  of  the  physical 

cornctne-s  i.f  my  theory. 
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vH5.    Hamiltonian  Function  for  the  Gravitation-field. 

Laws  of  Impulse  and  Energy. 

In  order  to  show  that  the  field  equations  correspond  to 

the  laws  of  impulse  ;uid  energy,  it  is  most  convenient  to 

write  it  in  the  following  Hamiltonian  form  : — 

f     f 

|  8  I      Hdr=o 

Here  the  variations  vanish  at  the  limits  of  the  finite 

four-dimensional  integration-space  considered. 

It  is  first  necessary  to  show  that  the  form  (47  n)  is 

equivalent  to  equations  (47).  For  this  purpose,  I.-t  us 

consider  H  as  a  function  of  f  and     <fv  (    •:•:.     ®  •> 

We  have  at  I  list 

,    9^, A        ,    9",,A    _9'',, \  3,  6-        3S 
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The  terms  arising  out  of  the  two  last  terms  within  tin- 

bracket  are  of  different  si^ris,  ami  change  into  one 

another  bv  the  interchange  of  the  indices  /*  and  ft.  They 

cancel  each  other  in  the  expression  forSH,  when  they  are 

multiplied  by  f  „»,  which  is  symmetrical  with  respect  to 

fj  and  ft,  so  that  only  the  first  member  of  the  bracket 

remains  for  our  consideration.  Remembering  ('31),  we 
thus  have  : — 

ftft        ra  i>  ft        a 

Therefore 

f     9H  r«       rft 

uv~  f*P  i'« !       9  f 

(48)  8H  r,r 

[  9.'/r 
If  we  now  cam   out  thr  \ariation>  in  (  IJa),    we  obtain 

the  system  of  equations 
/ 

a    /    an   v        an 
(•^h)  o ,          (  ,   )    -  ,     =<>. O  ,<•      v        ~     ii  r  I  ->    //  r 

a  o ,'/  O  f/ 

which,  nwinir  to    the    relation.-    (|s\    eoineide     with    (1-7), 

as  was  rr(|iiired  to  be  proved. 

If  (47b)  is  multiplied  by  /''. 
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aud  consequently 

r    a   /  an  {      a   /  /••  9" '<r    a.-'  V  «.,/«•/     a.-;.  V  •"   a 

we  obtain  the  equation 

_a_ 

a.* 

8H 

37. 

L  **• 

Owinsr  to  the  relations  (48),  the  equations  (4?)  and  (:>4). 

fjifh  „/"•    —  '    A°       ,,/"V  a         r-/^ 

It  is  to    be    noticed    that  f'L  is  not  a  tensor,  so    that  (lie 
<r 

''<iuatioii  (4'9)  holds  only  for  systems  t'or  which  \  —,/  =  ]. 
This  equation  expresses  tin-  laws  of  conservation  of  i  in  pulse 
and  energy  in  »  -ravitation-field.  In  fact,  the  inte-ra- 

tiou  of  this  equation  over  ;i  tlncc-dimcnsional  vohnne  V 

leads  to  the  four  equations 

(40a) r 
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where  <> , ,  >i .. ,  «'.,  are  the  direction-cosines  <>F  the  inward- 

drawn  normal  to  the  -urFaee-elemeut  i/S  in  the  Kuclidean 

Sense.  \V«-  reco^ni-e  iii  this  the  usual  expression  For  the 

laws  ol  conservation.  \\  e  denote  the  ma^nituiles  I ̂   as  the 

energy-components  oF  the  gravitation-field. 

I  will  now  put  the  equation  (1-7)  in  a  third  Form  which 

will  be  ver\  -erviceable  For  a  quick  realisation  of  our  object. 

By  multiplxiii"1  the  field-equations  (17)  with  <j'r ,  these  are 
obtained  in  the  mixed  Forms.  IF  we  remember  that 

,.<  a  r  ;„.__  6      ,          a/"   „ 
9,._  -a.,£V'    rf)"  a  „  r/-' 

which  ownm  to  (:U)  is  equal  to 

^a     (rri>"]    "
/r^r^ 

-  v'r/V'     r" 

or  slight  ly  altering  the  notation  equal  to 

6 

The  third  member  oF  tin-  expression  cancel  with  the 

second  member  of  the  field-equations  (17V  In  place  oF 

the  second  term  of  this  r\pre><ion.  we  ran,  on  account  oF 

the  relations  (")H\  put 

(    "  -1     Ar   f\  . V  /'      -j      /'     ' 



I'll  I  XUI'I.K    OK    I!M.\  |'|\  rn 

Therefore  in  UK-  place  of  the  equations  (17),  wo  obtain 

a 

^16.    General  formulation  of  the  field-equation 
of  Gravitation. 

The  lield-e<|uations  established  in  the  preceding  para- 

graph  for  spaces  free  from  matter  is  to  be  compared  with 

the  equation  V '-'<£="  of  the  Newtonian  theorv.  We  have 

now  to  find  the  equations  which  will  correspond  to 

Poisson's  Equation  V2<j!>  =  ̂ 7r^.  (/,  signifies  the  density  of 
matter) . 

The  special  relativity  theorv  has  led  to  the  conception 

that  the  inertial  mass  (Triige  Masse)  is  no  other  than 

energy.  It  can  also  be  fully  expressed  mathematically  by 

a  symmetrical  tensor  of  the. second  rank,  the  energy-tensor. 

We  have  therefore  to  introduce  in  our  generalised  theory 

energy-tensor  ~Ya  associated  with  matter,  which  like  the 

energy  components  1  ir  of  (he  gravitation-field  (equal ion-. 

10,  and  •")())  have  a  mixeil  character  but  which  however  can 
be  connected  with  synimetrieal  eovariant  tensors.  The 

equation  (•")!)  teaches  us  how  to  introduce  the  energy-tensor 

(corresponding  to  tin  density  of  1'oisson's  equation)  in  the 
field  e»|iiatioiis  of  gravitation.  If  we  consider  a  complete 

system  (for  example  the  Sular->\  stem  its  total  ina^-.  a- 

aiso  it>  total  i;ra\  itatin^  action,  v.ill  depend  on  the  total 

.•neiL,r\  of  the  system,  ponderable  as  well  a>  ̂ ravitat  ional. 
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'\'\\\>  can  !><•  expi  •(•s>cil,  hv  putting  in  (•")!),  in  place  of 

energy-components  /  ct'  gravitation-field  alone  the  ̂ um 

of  I  hi-  energy-components  of  matter  and  gravitation,  i.e., 

\Ye  thus  i;et  instead  of  (51),  the  teiisor-pijnation 

where  T  —  T1"  (Laife's  Sealar^.      The<«-  ;nv  tin-  general  tiehl- M 

e(|tialions  i)l'  gravitation    in   the   mixed    form.      In    plaei    of 
(47),  we  Ljet.ltv  working  l);iekvvards  the  svstem 

It  must  be  admitted,  that  this  introduction  of  the 

rLT\  -tensor  of  matter  cannot  he  justified  l>\  means  of  the 

Relativity-  Postulate  alone;  for  we  have  in  the  fore^oin^- 

analysis  deduced  it  from  the  condition  that  the  ••ner-\  of 

the  gravitation-field  should  exert  gravitating  action  in  the 

same  \\a\-  a-  every  other  kind  of  energy.  The  stroii^e-! 

ground  foi'  the  choice  id'  the  al'ove  eijiiilion  however  lies  in 
this,  that  they  lead,  as  their  <-..iisri|iirnce>,  to  equations 

--IIIL;  the  eon>crvatioM  of  the  comjioneiit  >  of  total 

energy  (the  ini|iul>e-  and  the  ciieru\  which  »\aetly 

correspond  to  the  e.|iiati"ii-  (I!')  and  i  M'a'.  This  shall  lie 
shown  afterward- 
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vj  17.     The  laws  of  conservation  in  the  general  case. 

The  equations  (5:2)  can  be  easily  so  transformed  that 

the  second  member  on  the  right-band  side  vanishes.  \\  c 

reduce  (or!)  with  reference  to  the  indices  p-  and  o-  and 

subtract  the  equation  so  obtained  after  multiplication  with 

.1  ̂   from  (5-2). 

AYe  obtain. 

we   i>|)eratc   on    il    l>y    ,.,  .      Now. 

9'.     9V 

.  r  *  """( °"> •2    8...     6. ..    L  »  P  V  8*, u  rr 

'I'lic  t'nst  and  the  third  member  of  the  round  bracket 

lead  to  t.\]ifc>sions  which  cancel  one  another.  a>  can  be 

eusilv  >e«-n  by  interchaii-in-  the  -nmniation-indices  u,  and 

,r.  on  the  one  hand,  and  ft  and  A.  on  the  other. 
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The  M'cond  term  c;in  be  transformed  according    to  (•>!). 
Sr,  that   u,.     et 

_ 
-  •-•   a  .„   a^  a.v  • 

The  second  member  of   the  t-xprcssioii  on  the    Ifi't-liand 

-idr  of  ("):2a)  leads  first  to 

1  a1      /  ,//* 
2  a.     a.r    I  f/ 

,(/ 
a--,    a,  a 

+    a.. 

The  exprerokm  arising  ont  of  the    last    incmlicr   \\-itliin 
the  round  brackel  vanishes  ftcooiding  to   (%29)    on   aooonnt 
of    tlic    flioiot-    of    axes.      The    two    others    can    l>e    taken 

ton-ether  and  ni\r  u>  on  account  of  (•'>!),  the  rxpression 

So  that  reroetnbering  (•">!)  we  li 

a,9^a,  (^- 
i      ̂ <r      A/^      ,_  «         \ 

•    'V  ''      rw  )  ** 
identical  I  v. 

19 
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I'Yoni  (5.))  jind  (~>:l-,i}  i!   follows  I  hat 

From  the  field  equations  of  gravitation,  it  also  follows 

that  the  conservation-laws  of  impulse  and  energy  are 
satisfied.  \Ve  see  it  most  simply  following  the  >atne 

reasoning  which  lead  to  equations  (I'.hi);  onlv  instead  of 
the  energy-components  of  the  gravitational-field,  we  are  to 

introduce  the  total  energy-components  of  matter  and  gravi 
tational  field. 

§18.     The  Impulse-energy  law  for  matter  as  a 
consequence  of  the  field-equations. 

8    ̂'
 

If  we    multi
ply  

  

(5-5)
  
wi
th
  

.  we    
 
L;-et   

   
ill    a     w;iv 

(T 

similar  to  §15,  remembering  that 

a/1 

:/,.„   =H       vanishes, 

a/"         ~  ̂  
the  equations  'I"       =_   0 

8'  '    8..  /"' 

or  remembering  (:>(>) 

(57)  g-/:+:     f£V=° 

4  comparison  with  (Ml>)  shows  that  these  equations 

Pof  the  above  choice  of  co-onlinates  (x  — ,/  =  1)  asserts 
nothiiiLl  hut  the  vanishing  of  the  di\eruence  .if  the  tensor 

(jf  the  eiier^'v-coiiiponents  ul'  matlei. 
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IMivsieallv  the  appearance  of  the  second  term  on  the 

left-hand  >ide  shows  that  for  matter  alone  the  law  of  con- 

iervation  of  impulse  and  energy    cannot    hold;  or  can  only 

hold  when  g^'a  are  eon>tants  ;  i.e.,  when  the  tield  of  gravi 

tation  vanishes.  The  second  memhei  i>  ;in  e\|H'.^-ion  for 

impulse  and  euergj  whic!ithe  gravitation-field  exe:ls  pel- 
time  and  per  volume  upon  matter.  This  comes  out  clearer 

when  instead  of  (57  we  write  it  in  the  Form  of  (17). 

9'C-  a 
9;  =-r:fi  ̂  

The  ri-ht-liand  side  expresses  the  interaction  of  the  energy 

of  the  gravitatioiiftl-iifld  on  matter.  The  field-equations  of 

gravitation  contain  thus  at  the  same  time  I  conditions 

which  are  to  be  satisfied  by  all   material   phenomena.     We 

^•{  the  ei|iiations  of  the  material  phenomena  completely 

when  the  latter  i>  characterix-d  In  four  other  differential 

equation;-  independent  of  one  another. 

D     THE  ''MATERIAL"  PHENOMENA. 

The  Mathematical  auxiliaries  developed  under  '  H  !  at 

once  enal)ie>  u>  to  ̂ cnei-ali-e,  according  to  the  generalised 

theor\  of  relativitx,  the  physical  law>  of  matter  (Hydrody- 

namies,  Maxwell's  I'llectro-dynainies  a>  the\  lie  already 

formulated  according  to  the  special-retain  ity-theory. 

The  generalised  Kelativitx  Principle  leads  us  to  no  further 

limitation  of  po->il>ilitics  ;  hut  it  eiiahles  u>  to  know 

exactly  the  influence  of  gravitation  on  all  processes  with 

out  the  introduction  of  any  new  hypothesis. 

It  is  owinii  to  tins,  that  as  regard-  the  physical  nature 

of  matter  1,111  a  narrou  >en>e)  :.o  delinitt  iie:-e--ar\  a»nni|i- 

tion>  are  to  he  introduced.  The  i|ite-tioii  ma\  he  open 
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whether  the  theories  of  the  clectro-maguetic  field  and  the 

gravitational-field  together,  will  Jonn  a  sufficient  basis  for 

the  theory  of  matter.  The  general  relativity  j»o$tulate  can 

teach  us  no  new  principle.  But  by  building  up  tin- 

theory  it  must  be  shown  whether  electro-magnetism  and 

gravitation  together  can  achieve  what  the  former  alone 
did  not  succeed  in  doin<r. 

§19.     Euler's  equations  for  frictionless  adiabatic 
liquid. 

Let  //  and  p,  be  two  scalars,  of  which  the  first  denotes 

the  pressure  and  the  last  the  density  of  the  fluid  ;  between 

them  there  is  a  relation.  Let  the  eontrawriant  symmetrical 
tensor 

,j  ,j  il.r         '/•''/) ff 

be  the  contra-variant  energy  -tensor  of    the    liquid.     To    it 
also  belongs  the  covarianl  tensor 

/         /i  +  '/  ,      '/     ,,       ,-  p 
fir    '          '  i><>    ,/..    '  fl>     ,/>•    ' 

>  well  a>  the  mixed  tensor 

It'  we  put  the  ri^ht-liand  side  ol'  ̂ OSb)  in  i^j/a)  we 
•^t  t  the  ̂ eiieriil  h\  drod\  ii;iinical  ei|iialiuns  of  Kuler  accord 

ing  tn  the  g --ne raided  relativity  theory.  This  in  \>\  inciplc 

Completely  solves  the  problem  of  motion:  for  the  four 
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equations  (.")?a)  together  \vitli  the  ̂ iveii   equation    between 

//  and  f>,  and  the  equation 

./  p     -  1 •V      ,ls       ,/* 

are  Millieient,  with  the    ̂ iven     values   of  y   ,,,     for     finding 

out  the  six  unknowns 

'    '      '    '          (/X  I/S      '  l  If  l/S 

If  //  's  are  unknown  we  have  also  to  take  the  equ- 

tions  (*)-i).  There  are  now  11  equations  for  rinding  out 

10  functions  //  ,  so  that  the  number  is  more  than  sufii- 

cient.  Now  it  is  be  noticed  that  the  equation  (o?a)  is 

already  contained  in  (•">•'$),  so  that  the  latter  only  represents 

(7)  independent  equations.  This  indeliniteness  is  due  to 

the  wide  freedom  in  the  choice  of  co-ordinates,  so  that 

mathematically  the  problem  is  indefinite  in  the  sense  that 

of  the  gpace-fuuetiona  can  be  arbitrarily  chosen. 

$20.    Maxwell's  Electro-Magnetic  field-  equations. 

Let  <f>  be  the  components  of  a  covariant  four-vector. 

the  electro-tnagnetic  potential  ;  from  it  let  iis  form  accord 

ing  to  (.'US)  the  components  I-'  ul  the  eovariant  >i  \-vector 

of  the  electro-magnetic  field  aeeordin^-  \<>  the  >\>tem  of 
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From  (•")'.»),  it  follows  that  the  system  ol'  equations 

9F 

9F, 

a< is    satisfied    of     which    the    left-hand    side,     according    to  • 

(o?),  is    MM    anti-s\  mmetrical    tensor    of    the    third    kind. 

This  system  (HO)  contains  essentially  four  equations,  which 

can  be  thus  written  : — 

((lOa) 

a-. 

This  system  of  eqaatioDfl  correeponds  to  the  second 

system  of  equations  of  Maxwell.  \Ve  see  it  at  once  if  we 

put 
(   I'Y,    =      II,          !•',<    =       K, 

Instead  of  (OOa)  we    can    therefore    write    according  to 

the  usual  notation  of  three-dimensional  vector-analysis: — 

an 

a/ 

.it  K=( 

div   1I=, 
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The  litst  Maxwellian  system  is  obtained    by    a    genera  - 

lisation  of  the  t'onn  n'iven  liy  Miukowski. 

\Ve    introduce    the    (-out  ra-variant     six-vector  1''   0     ''\ 

•P 

tin-  f«|iu(i()n 

and  also  a  contra-variant  four-vector  .l/',  \\liicli  is  the 
electrical  current-deusitv  in  vacuum.  Then  remembering 

(40)  we  can  establish  the  system  of  equations,  which 

remains  invariant  for  any  substitution  with  determinant  I 

g  to  our  choice  of  co-ordinates). 

It'  we  put 

,    I'11    =    H'.,        K"    =  }'/. (••I  ) 

F"    =    H          KS1    =      -      M' 

which  »iuantities  become  e(|iial    to    II,     .  !•]      in   the  ra>e   of 

the  special  relativity  theory,  and  besides 

.1 '   = 

we  Gjet  instead  of  ((>•'$) 

r 

=  P 

,-ot  H'-      — '      =  * 

a/ 
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The  p(|uations  (('•()).  ((>:!)  and  (<>.">)  give  ihus  a  generali 

sation  of  Maxwell's  field-equations  in  vacuum,  which 
remains  true  iti  our  chosen  system  of  co-ordinates. 

T/ti'  energy-components  <>/'  I  In-  electTO-ntttffneftc  fi''/<I  . 
Let  us  form  1  he  inner-product 

«>:>)  K      =     K         -I'''. ,<r  <TJ> 

According  to  (01)  its  components  ean  l>e  written  down 
in  the  three-dimensional  notation. 

/.  H]. 

(.   K 

K      is  a    eovariant    four-vector  whose  components  are  equal 
cr 

to  the  negative  impulse  and  energy  which  are  transferred 

to  ill"  electro-magnetic  field  per  unit  oi  time,  and  per  unit 

of  volume,  bv  the  electrical  masses.  If  the  electrical 

masses  be  free,  that  is,  under  the  influence  of  the  electro 

magnetic  field  onlv,  then  the  eovariant  four-vector 

K  will  vanish. (T 

In  order  to  get  the  energy  components  T  of  the  elec 

tro-magnetic  field,  we  require  only  to  give  to  the  equation 

K  —  o,  the  form  of  the  equation  (">7). (T 

From  (»!•'})  and  ((>•">)  we  get  first, 

6      ,,       ,,,W<"
9'"' 

a,    (    v  e» 
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On  account  «f  (60)  the  second  member  on  the  right-hand 
side  admits  of  the  transformation — 

ft  V 

to  symmetry,  this  expression  can  also  be  written  in 
the  form 

which  can  also  be  put  in  the  form 

1    9  .<•      \  llft      /*•'    / 

+    '  F  ft    F       2         (   ̂  'lVft} 
ap     ̂ v  6  •'•     V 

The  first  of  these  terms  r-:m  be  written  short lv  :i-~ 

:in« I  the  second  after  difl'erentiation  can  be  transformed  in 
the  form 
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11'  we  take  all   the  throe   terms    together,    we   get   the 
relation 

<«» 
where 

(<Hk)  T"=-  F      Fv"  +    \  81'  F 
(Td 

« 
a/? 

On  account  of  (30)  the  equation  (66)  become?  equivalent 

to  (57)  and  (57a)  when  K  vanishes.  Thus  T  's  are  the 

energy -components  of  the  electro-magnetic  field.  With 

the  help  of  (61)  and  (64)  we  can  easily  show  that  the 

energy -components  of  the  electro-magnetic  field,  in  the  case 

of  the  special  relativity  theory,  give  rise  to  the  well-known 

Maxwell-Poynting  expressions. 

We  have  now  deduced  the  most  general  laws  which 

the  gravitation-field  and  matter  satisfy  when  we  use  a 

co-ordinate  system  for  which  \/— .'/  =  1-  Thereby  we 
achieve  an  important  simplification  in  all  our  formulas  and 

calculations,  without  renouncing  the  conditions  of  general 

covariance,  as  we  have  obtained  the  equations  through  a 

specialisation  of  the  co-ordinate  system  from  the  general 

C'O variant-equations.  Still  the  question  is  not  without  formal 

interest,  whether,  when  the  energy-components  of  the 

gravitation-Held  and  matter  is  defined  in  a  generalised  manner 

without  any  specialisation  of  co-ordinates,  the  laws  of  con 

servation  have  the  form  of  the  equation  (06),  and  the  field- 

equations  of  gravitation  hold  in  the  form  (52)  or  (52a)  ; 

such  that  on  the  left-hand  side,  we  have  a  divergence  in  the 

usual  sense,  and  on  the  right-hand  side,  the  sum  of  the 

energy-components  of  matter  and  gravitation.  J  have 
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found  out  thai  this  is  indeed  the  ease,  lint  I  am  of  opinion 

that  the  eominnnicat ion  of  my  rather  comprehensive  work- 
on  this  subject  will  not  pay,  for  nothing  essentially  ne\\ 
conies  out  of  it. 

E.    $21.    Newton's  theory  as  a  first  approximation. 

We  have  already  mentioned  several  times  that,  the 

special  relativity  theory  is  to  be  looked  upon  as  a  special 

case  of  the  general,  in  which  q      's  have  constant  values  (4). 

p.v 

This  signifies,  according  to  what  has  been  said  before,  a 

total  neglect  of  the  influence  of  gravitation.  We  get 

one  important  approximation  if  we  consider  the  case 

when  //  \  differ  from  (4)  only  by  small  magnitudes  (com 

pared  to  I)  where  we  can  neglect  small  quantities  of  the 

second  and  higher  orders  (first  asjK'e.t  of  the  approxima 
tion.) 

Further  it  should  be    assumed    that     within     the   >pace- 
, 

time  region  considered,  f]     's   at  infinite  distances    (JIMIIL: 

the  word  infinite  in  a  spatial  sense)  can,  by  a  suitable  choice 

of  co-ordinates,  tend  to  the  limiting  values  (4);  /.<•.,  we  con 
sider  only  those  gravitational  fields  which  can  be  regarded 

as  produced  by  masses  distributed  over  finite  regions. 

\Ve  can  assume  that  this  approximation  should  lead  to 

Newton's  theory.  For  it  however,  it  is  necessary  to  treat 
the  fundamental  equations  from  another  |M>in<t  <>f  view. 

Let  us  consider  the  motion  of  a  particle  according  to  the 

equation  (4fi).  In  the  case  of  the  special  relativity  theory, 

the  components 
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can  take  any  values  :    This  signifies  that  any 

--  y  +  (;;;;  >%<  g  y 
can  appear  which  is  less  than  the  velocity  of  light  in 

vacuum  (r  <1).  If  we  finally  limit  ourselves  to  the 

consideration  of  the  case  when  •/,-  is  small  compared  to  the 
velocity  of  light,  it  signifies  that  the  components 

'/(1  <k2  '/-''.I 

.>)  8oiil«v  Juiit*iio-»  ivf  r^  ui  fl«v»<wx 

can  be  treated  as  small  quantities,  whereas     '  '     is  equal  In 

1,  up  to  the  second-order  magnitudes  (the  second  point  of 
view  for  approximation). 

Now  we  see  that,  according  to  the  first  view  of  approxi 

mation,  the  magnitudes  \~  's  are  all  small  quantities  of 
at  least  the  first  order.  A  glance  at  (4(5)  will  also  show, 

that  in  this  equation  according  to  the  second  view  of 

approximation,  we  are  only  to  take  into  account  those 

terms  for  which  /x,=v=4. 

By  limiting  ourselves  only  to  terms  of  the  lowest  order 

we  get  instead  of  (46),  first,  the  equations  :  — 

=    f  \  i-  where  ds=<1st  =<//. 

or  by  limiting  ourselves  only  to  those  terms  which  according 

to  the  first  stand-point  are  approximations  of  the  first 
order, 

,/'.x,  r  44  -I 
,//•  -i  J- 
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It'  we  further  ;t—ume  that  the  gravitation-field  is 
quasi-static,  i.e.,  it  is  limited  only  to  the  case  when  the 

matter  producing  the  gravitation-Hold  is  moving  slowh 

(relative  to  the  velocity  of  light)  we  can 'neglect  the 

differentiations  of  the  positional  co-ordinates  on  the  ni;ht- 

hand  side  with  respect  to  time,  so  that  \ve  get  -idj  lt 

'<"'  9</4  + 

11171          ,fi.-T  =-i    a^         (»,  =  », a, ») 
Tins  i>  the  equation  [of  motion  of  a  material  point 

according  to  Newton's  theory,  where  fftt/t  plays  the  part  of 
gravitational  potential.  The  remarkable  thing  in  the 

result  is  that  in  the  first-approximation  of  motion  of  the 

material  point,  only  the  component  ytl  of  the  fundamental 

tensor  appears. 

Let  us  now  turn  to  the  h'eld-equation  (5o).  In  this 
case,  we  have  to  re  mem  her  that  the  energy-tensor  of 

matter  is  exclusively  defined  in  a  narrow  sense  bv  the 

density/*  of  matter,  >.<-.,  by  the  second  member  on  the 

right-hand  side  of  58  [(">Sa,  or  5M>)].  If  we  make  the 
necessary  approximations,  then  all  component  vanish 
except 

T  ,  ,  =  i*  ~   T 

On  the  left-hand  sidr  of  (r,:))  the  second  term  is  an 

infinitesimal  of  the  second  order,  so  that  the  first  leads  to 

the  following  term-  in  the  approximation,  which  are  rather 
interesting  fur  us  ; 

6  r^'i  4  a  [>"!  4  a  r/u/i    a  r^i 
a-l  J  f  e-.L  2J  +  a.',L  J     8^L  .J- 
By  neglecting  all  different iat ions  with  regard  to  time, 

this  leads,  when  ̂ =^=4,  to  the  expression 

_!   /  62.'/,  ,6  •-'>,,,  ,  a2:/,,    v  x 
-^  (     6""   +    6'-   +    6         '  <7"- 
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The  last  of  the  equations  (53)  thus  leads  to 

(68)  VY,,=^- 

The  equations  (67)  and  (68)  together,  ai>e  equivalent   to 

Newton's  law  of  gravitation. 

For  the  gravitation-potential  we  get  from  (67)  and  (68) 
the  exp. 

(68a.) 

whereas  the  Newtonian  theory  for  the  chosen  unit  of  time 

gi  ves 

—  —  %    I  . wliere    K  denotes    usually    the 

gravitation-constant.  67xlO~s  :  equating  them  we  tret 

SirK 

(6!»)  *  =      ™     =  Ks7xlO-". 

$22  Behaviour  of  measuring  rods  and  clocks  in  a 

statical  gravitation-field.  Curvature  of  light-rays. 
Perihelion-motion  of  the  paths  of  the  Planets. 

In  order  to  obtain  Newton  a  theory  as  a  first  approxi 

mation  we  had  to  calculate  only  //,.,,  out  of  the  10  coni|X)- 

nt'iits  //  of  the  gravitation-potential,  for  that  is  the  only 

component  which  comes  in  the  first  approximate  equal ion>- 
of  motion  of  a  material  point  in  a  gravitational  field. 

We  M-e   however,    that  the    other    components   of    </ 

should  also  differ  from  the  values-  given  in  (1-)  as  required  by 

the  condition  «/  =  —  1 . 
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For  a  heavy  particle  at  the  origin  of  co-ordinates  and 

generating  the  gravitational  field,  we  get  as  a  first  approxi 

mation  the  symmetrical  solution  of  the  equation  :  — 

S      is  1  or  0.  according  as  p  =  o-  or  not  and  /•  is    the  quantity 

... 

On  account  of  (68a)  \VP  have 

(70a)  .  .  =  £' 

where  M  denotes  the  mass  generating  the  field.  It  is  easy 

to  verify  that  this  solution  satisfies  approximately  the 

field-equation  outside  the  mass  M. 

Let  us  now  investigate  the  influences  which  the  field 

ef  mass  M  will  have  upon  the  metrical  pro|>erties  of  the 

Held.  Between  the  lengths  and  times  measured  locally  on 

the  one  hand,  and  the  differences  in  co-ordinutes  d.r  on  the 
V 

other,  \ve  have  the  relation 

For  a  unit  me:i8iiring  rod,  for  example,    placed    parallel   to 
the      axis,  we  have  to  put 

./»•'=  -1.  i/.r,=,f.-s=,/.,4=o 

then  -!=</      '/-••". 
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If  the  unit  measuring  rod  lies  on  the      axis,  the    tirst  of 

the  equations  (rO)  gives 

From  both  these  relations  it  follows  as  a  first  approxi 
mation  that 

(71)  ,/.•  =  !-  4£   . 

The  unit  measuring  rod  appears,  when  referred  to  the 

co-ordinate-system,  shortened  by  the  calculated  magnitude 
through  the  presence  of  the  gravitational  Held,  when  we 

place  it  radially  in  the  field. 

Similarly  we  can  get  its  co-ordinate-length  in  a 
tangential  |x>sition,  if  we  put  for  example 

(/x2  =    — 1.  </.",_  =</.( •_,  =</••,  =o',   .i.1!—!'.   .!•.,=. ''3=O 

we  then  get 

i71a.)  -!=.'/»,  '/••!;    =  -''  "I    • 

The  gravitational  field  has  no  influence  upon  the  length 

of  the  rod,  \vhon  we  put  it  tangentially  in  the  field. 

Thus  Euclidean  geometry  docs  nol  hold  in  the  giavi- 
tational  lield  O\»MI  in  the  first  approximation,  if  we  conceive 

that  one  and  the  same  rod  independent  of  its  position  and 
its  orientation  can  serve  as  the  measure  of  the  same 

extension.  But  a  glance  at  (70a)  and  (fi!))  shows  that  the 

ex]>ected  difference  is  much  too  small  to  l>e  noticeable 

in  the  measurement  of  earth's  surface. 

AVe  would  further  investigate  the  rate  of  going  of  ;i 

i  mil -clock-  which  is  placed  in  a  statical  gravitational  field. 
Mere  we  have  for  a  period  of  the  cluck 
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then  we  h:ive 

•/••,=!  + 

I  f  "• 
Therefore  the  clock  goes  slowly  what  it  is  place*!  in 

the  neighbourhood  of  ponderable  masses.  It  follows  from 

this  that  the  spectral  lines  in  the  light  coming  to  us  from 

the  surfaces  of  big  stars  should  appear  shifted  towards  the 

red  end  of  the  spectrum. 

Let  us  further  investigate  the  path  of  light-rays  in  a 

statical  gravitational  Held.  According  to  the  special  relati 

vity  theory,  tin*  velocity  of  light  is  given  by  the  equation 

thus  also  according  to  the  generalised   relativity  theory   it 

is  given  by  the  e<|ii:it  ion 

(73  *>9V*J'  (/''    =0' 

If  the  direction,  »>.,  the  ratio  d    ,  :  <l,<\  :   //-,    is  gi\Mi. 

ihe  e»jii!ition  (7:J)  gives  the  magnitudes 

and  with  it  the  velocity, 

a 
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in  the  sense  of  the  Kuclidean  Geometry.  vVe  can  easily  see 

that,  with  reference  to  the  co-ordinate  system,  the  rays  of 

light  must  appear  curved  in  case  //  *s  are  not  constants. 

If  a  be  the  direction  perpendicular  to  the  direction 

of  propagation,  we  have,  from  II uy gen's  principle,  that 
light-rays  ]  (taken  in  Ihe  plane  (y,  »)]  must  suffer  a 

curvature      ̂ -?    . 

A  Light-ray 

Let  us  Hnd  out  the  curvature  which  a  light-ray  suffers 

when  it  goes  by  a  mass  M  at  a  distance  A  from  it.  If  we 

use  the  co-ordinate  system  according  to  the  above  scheme, 

then  the  totsil  bending  B  of  light-rays  (reckoned  positive 

when  it  is  eonca.ve  to  the  origin)  is  given  as  ;i  sufficient 

approximation  bv 

where  (?.'')  and  (70)  gives 

, , \  ray  of  light  just  gra/ing  the  sun  would  suffer  :i  beml- 

ing  of  1'7",  whereas  one  coming  by  Jupiter  would  have 
a  deviation  of  about  -0:2". 
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If  we  calculate  the  gravitation-field  to  a  greater  order 

of  approximation  and  with  it  the  corresponding  path 

of  a  material  particle  of  a  relatively  small  (infinitesimal) 

mass  we  get  a  deviation  of  the  following  kind  from  the 

Kepler-Newtonian  Laws  of  Planetary  motion.  The  Kllipse 

of  Planetary  motion  suffers  ;i  slow  rotation  in  the  direction 
of  motion,  of  amount 

( 7.')  i  .<=  7r,"S        per  revolution. T"c*(l— •" ) 

In  this  Formula  '  ft  '  signifies  the  semi-major  axis,  c, 
the  velocity  of  light,  measured  in  the  usual  way,  f,  the 

eccentricity,  T,  the  time  of  revolution  in  seconds. 

The  calculation  gives  for  the  planet  Mercury,  a  rotation 

of  path  of  amount  43"  per  century,  corresponding  suffi 
ciently  to  what  has  been  found  by  astronomers  (Leverrier). 

They  found  a  residual  perihelion  motion  of  this  planet  of 

the  given  magnitude  which  can  not  I>e  explained  b\  the 

perturbation  of  the  other  planet-. 





NOTES 

Note  1.     The  fundamental  electro-magnetic  equation 
of  Maxwell  for  stationary  media  an>  :  — 

<mrlH=I 

D-//K 

According  to  Hertx  and  Hoaviside,  these  require  modi 
fication  in  the  case  of  moving  bodies. 

Now  it  is  known  that  due  to  motion  alone    there   is   a 

change  in  a  vector  /?  given  by 

(  _  -  -  )  due  to  motion  —  //,  div  \\  +enrl  \Uu\ 
\  o'  / 

where  «  is  the  vector    velocity    of   the    moving    bodv    and 

[Rw]  the  vector  product,  of  \\  and  //. 

Hence  equations  (1)  and  (2)  become 

I-  curl  H=  ~   +v  div  D-fcurl  \  ect.  [Dv]+pv  (1-1) 

and 

K=     --    |-  «  div  H  -j-  curl  \Vrti. 

which  gives  linally,  for  p  —  o  and  div  H  =  O, 

+  n  div  l)=:r  curl  111-  Vwfc,  '  D«l   ) O  /  '• 

,H      )       - 
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Let  us  consider  a  beam  travelling  along  the  ./--axis, 

with  apparent  velocity  /•  (i.e.,  velocity  with  respect  to  the 
Hxed  ether)  in  medium  moving  with  velocity  n,  =  n  in  the 
same  direction. 

Then     if    the    electric    and     magnetic      vectors    are 
f-  A  (x-vt) 

proportional         to  e  ,  we  have 

f-=/A,  |j  =  -/Ar,   |-  =    £    =0,  ,/,  =  ;,.  =0 5."  6*  dy       8- 

Since  D  =  K  E  and  B  =  /A  H,  we  have 

.  ...     (1-22) 

/x  (»;-«.)  H,=cEv  ...'    (2-23) 

Multiplying  (1'23),  by  (2'28) 

/A   K  (f  —  7')2=C2 

Hence  (i'-//)2=cs/^  =  »'.5f 
.'.  '•  =  «„  +  w, 

making  Fresnelian  convection  co-efficient  simply  unity. 

Equations  (1'21),  and  (^'^l)  may  bo  obtained  more 
simply  from  physical  considerations. 

According  to  Heaviside  and  Hertz,  the  real  seat  of 

both  electric  and  magnetic  polarisation  is  the  moving 

medium  itself.  Now  at  a  point  which  is  tixed  with  respect 

to  the  ether,  the  rate  of  change  of  electric  polarisation  is 

5D 



NOTE*  167 

Consider  a  siab  of  matter  moving  with  velocity  n, 

along-  the  ./--axis,  then  even  in  a  stationary  field  of 
electrostatic  polarisation,  that  is,  for  a  Held  in  which 

=  o,  there  will  be  some-    change    in  the  polarisation  of or 

the  body  due  to  its  motion,  given  by  ur   —  .       Hence       we 

O  <: 
must  add  this  term  to  a    purely    temporal    rate   of  change 

-^-    .     Doing    this    we    immediately    arrive    at    equations 
Of 

(T21)  and  (2'21)  for  the  special  case  considered  there. 

Thus  the  Hert/-Heaviside  form  of  field  equations  gives 

unity  as  the  value  for  the  Fresnelian  convection  co-efficient. 
It  has  been  shown  in  the  historical  introduction  how  this 

is  entirely  at  variance  with  the  observed  optical  facts.  As 

a  matter  of  fact,  Larmor  lias  shown  (Aether  and  Matter) 

that  I—  I/ft2  is  not  only  sufficient  but  is  also  necessary,  in 
order  to  explain  experiments  of  the  Arago  prism  type. 

A  short  summary  of  the  electromagnetic  experiments 

bearing  on  this  question,  has  already  been  given  in  the 
introduction. 

According  to  Hertz  and  Heaviside  the  total  polarisa 

tion  is  situated  in  the  medium  itself  and  is  completely 

carried  away  by  it.  Thus  the  electromagnetic  effect 

outside  a  moving  medium  should  be  proportional  to  K,  the 

specific  inductive  capacity. 

Rvic/mtil  showed  in  l^itl  that  when  a  charged  condenser 

is  rapidly  rotated  (the  dielectric  remaining  stationary), 

the  magnetic  effect  outside  is  proportional  to  K,  the  Sp. 

Ind.  Cap. 

/,',•;/////,-//  (Annaleu  .lev  IMiysik  1SSS,  1890)  found  that 
if  the  dielectric  is  rotated  while  the  condenser  remains 

stationary,  the  effect  is  proportional  to  K  — 1. 
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Kickenwalil  (Annaleu  der  Physik  1903,  IVOV)  rotated 

together  both  condenser  and  dielectric  and  fouud  that  the 

magnetic  effect  was  proportional  to  the  potential  difference 

and  to  the  angular  velocity,  but  was  completely  independent 

of  K.  This  is  of  course  quite  consistent  with  Rowland 

and  Rb'ntgeu. 

Blotidlot  (Coinptes  Reudus,  1'JOl)  passed  a  current 
of  air  in  a  steady  magnetic  Held  II,,  (H  =H,=0).  If 

this  current  of  air  moves  with  velocity  /',  along  the 

.F-axis,  an  electromotive  force  would  be  set  up  along  the 

r-axis,  due  to  the  relative  motion  of  matter  and  magnetic 

f-ubt's  <>f  induction.  A  pair  of  plates  at  .*=  +  a,  will  be 
charged  up  with  density  /i=D,  =  KE  =K.  n.  Hy/c. 
But  Blundlot  failed  to  detect  any  such  effect. 

//.  A.  intsnn  (Phil.  Trans.  Kuyal  Sot-.  190i)  repeated 
the  experiment  with  a  cylindrical  condenser  made  of 

ebouy,  rotating  in  a  magnetic  Held  parallel  to  its  own 

axi^  He  observed  a  change  proportional  to  K— I  and 
not  to  K. 

Thus  the  above  set  of  electro-magnet ic  experiments 

contradict  the  llcrt/.-lleaviside  equations,  and  these  must 
be  abandoned. 

[P.  C.  M.] 

Not©  2.      Lur«'iii:   Ti'ii itxfoi'm/i/ i<nt. 

Lorentz.  \rrsuch  einer  theorie  der  elektri-chen  uud 

optibfhon  Ki'-'C'lu'ijinn^fn  im  bewegteii  Korpern. 
(Leiden— 1895). 

Lorent/..  Theory  of  .MK-ctrnns  (English  eilition), 

pages  l:»r---Dii.  i30,also  notes  '<••'>.  86,  pages  :;is.  :;-:s. 
Lorentx.  wanted  to  explain  the  (Vfichelson-Morley 

null-effect.  In  order  to  do  50,  it  was  obviously  necessary 

to  explain  tin-  I'it/.gerald  COUtrACtlOD.  Lorentx,  worked 
on  the  hypothesis  (hat  an  electron  itself  undergoes 
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contraction  when  moving.  He  introduced  new  variables 

for  the  moving  system  defined  by  the  following  set  of 

equations. 

and  for  velocities,  used 

v.*=p*v,  +  i',  v,l=(3r,,  rrl=(3r,  and  pl=p/fi. 

With  the  help  of  the  above  set  of  equations,  which  is. 
known  as  the  Lorentz  transformation,  he  succeeded  in 

showing  how  the  Fitzgerald  contraction  results-!  as  a 

consequence  of  ''  fortuitous  compensation  of  opposing 

effects." 
It  should  be  observed  that  the  Lorentz  transformation 

is  not  identical  with  the  Einstein  transformation.  The 

Kinsteinian  addition  of  velocities  is  quite  different  as 

also  the  expression  for  the  ''relative"  density  of  electricity. 

It  is  true  that  the  Max  we  11-  Lorentz  Held  equations 

remain  practical/  1/  unchanged  by  the  Lorentz  transforma 

tion,  but  they  ar>-  changed  to  some  slight  extent.  UUP 
marked  advantage  of  the  Einstein  transformation  con^i-t> 

in  the  fact  that  the  Held  equations  of  a  moving  system 

preserve  exactly  the  same  form  as  those  of  a  stationary 
M  -torn. 

It  should  also  be  noted  that  the  l;  resin-Han  convection 

coctKcient  comes  out  in  the  theory  of  relativity  as  a  direct 

consequence  of  Kin-tern'-  addition  of  velocities-  and  is 

quite  independent  o!'  any  electrical  theory  nf  mattrr. 
[P.C  If.] 

Note  3. 

Lorent/.,    Theory  of    Klectrons    (English    edition), 

§  181,  page  513. 
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H.  Poiucare,  Sur  la  dynamujue  'electron,  Rendiconti 
del  circolo  matematico  di  Palermo  21  (1906). 

[P.  C.  M.] 

Note  4.     lielaticity  Theorem  <ai<l  Kelativiiy-Principle. 

Lorentz  showed  that  the  Maxwell-Lorentz  system 

of  electromagnetic  field-equations  remained  practically 

unchanged  bv  the  Lorentz  transformation.  Thus  the 

electromagnetic  laws  of  Maxwell  and  Lorentz  can  be 

definitely  proved  "  to  be  independent  of  the  manner  in 
which  they  arc  referred  to  two  coordinate  systems  which 

have  a  uniform  translatory  motion  relative  to  each  other." 

(See  "  Electrodynamics  of  Moving  Bodies,"'  page  5.)  Thus 
so  far  as  the  electromagnetic  laws  are  concerned,  the 

principle  of  relativity  ant  he  proved  lo  be  fntf. 

But  it  is  not  known  whether  this  principle  will  remain 

true  in  the  case  of  other  physical  laws.  We  can  always 

proceed  on  the  assumption  that  it  does  remain  true.  Thus 

it  is  always  possible  to  construct  physical  laws  in  such  a 

way  that  they  retain  their  form  wln-n  referred  to  moving 
coordinates.  The  ultimate  ground  for  formulating  physi 

cal  laws  in  this  way  is  merely  a  subjective  conviction  that 

the  principle  of  relativity  is  universally  true.  There  is 

no  a  priori  logical  neccs^it  \  t!:;it  it  should  be  so.  Hence 

the  Principle  of  Relativity  (so  I'ar  as  it  is  applied  to 

phenomtMin  other  than  electromagnetic')  must  be  regarded 
as  a  jjostiiliil.t.-,  which  we  have  u.-Mimed  to  be  true,  but  for 
which  \\v  cannot  adduce  any  definite  proof,  until  after 

the  generalisation  is  made  and  its  consequences  tested  in 

the  light  of  actual  experience. 

[P.  C.  M.j 

Note  5. 

See  "  Kli-ctrodynamic>  oi'  Moving  Hodies,"  p.  5-8. 
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Note  6.      /•'/>/,/  fymi/f aim  in    l/////-0jrj»/r*  l-'onii. 

Equation!  (/)    :md    (//)    become     when    expanded    into 
Cartesians  :— 

8*1   8*»,  a«, 
^  a  o   "  — />''  , o  y        o  -        o  T 

,_. 
T     a^     av^""   r  ' 

8  MI,     8>",      9«', 
o —          >s~"    ~"   ̂        =/>»- a.--     a//     8r        j 

Substituting  ;c, ,  ,,'2,  .-i-3>  .r ,  for  .<•,  ;/,  r,  and    ir  ;  and    p, , 
f.jj  pj,  p^  for  pi( . t  />"yi  pit:)  ipi  where  /^=  \/    lt 

We  get, 

a »'  s    a^i,    •  a^j  "^ 
"8;r,  ~  ?8 

a?»:    9m,    ,-9j\ 

ar,~  aa-,~*9^ 
and  multiplyinG:  (2'1)  by  /  \v<>  get 

a/'*',    a'-',    a/'-1 

Now  substitute 

»»•  =/a  *  = —/«  I     a' id      /V,=/4I=— /it 

711 »  =/S  1  =  ""/I  S  * ''  ,  =/4  *  =  —  /,  « 
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and  \ve  irct  finally  : — 

8./.  i     a/,,     8/S4 

d^t-^+iSt88^ ...      (3) 

a/,, 
,  8/,4 +*5* 

8/41 ,  s/*. ,  a/.., 

[P.  C.  M.j 

Note  9.      On  the  Constancy  of  the  Velocity  of  /,//////. 

Page  i:> — refer  also  to  page  6,  of  Einstein's  paper. 
One  of  the  two  fundamental  Postulates  of  the  Principle 

of  Relativity  is  that  the  velocity  of  light  should  remain 

constant  whether  the  source  is  moving  or  stationary.  It 

follows  that  even  if  a  radiant  source  S  move  with  a  velocity 

u,  it  should  always  remain  the  centre  of  spherical  wave- 

expanding  outwards  with  velocitv  c. 

At  first  sight,  it  may  not  appear  clear  why  the 

velocity  should  remain  constant.  Indeed  according  to  the 

theory  of  Ritz,  the  velocity  should  become  c  +  it,  when  the 

source  o!'  light  moves  towards  the  observer  with  the 
velocity  n. 

Prof,  de  Sitter  has  given  an  astronomical  argument  for 

deciding  between  these  two  divergent  views.  Let  u< 

suppose  there  is  a  double  star  of  which  one  is  revolving 
about  the  common  centre  of  gravity  in  a  circular  orbit. 



VOTES  •      173 

Let  the  observer  lie  in  the  plane  of  the  orbit,  at  a  great 
distance  A. 

The    light  emitted  by  the  star  when  at  the  position  A 

will  be  received  by  the  observer   after  a    time  ,    while 

c  +  it 
the  light  emitted  by  the  star  when  at  the    position    B    will 

be    received   after  a  time     — .     Let    T   be   the  real  half- 
c  —  u 

period  of  the  star.  Then  the  observed  ha  If- period  from 

B  to  A  is  approximately  T  —  '*-—'  and  from  A  to  B  is 

T+    2-All.     Now    if    ̂     be   comparable    to    T,  then    it 

is  impossible  that  the  observations  should  satisfy 

Kepler's  Law.  In  most  of  the  spectroscopic  binary  stars, 

'-^-=-  are  not  onlv    of    the  same  <>nler  a>  T,  but  are  mostly 
ca 

much  larger.  For  example,  if  ;<=!()()  /•///  sec,  T  =  b  da\s, 

A/c  =  33  years  (corresponding  to  an  annual  parallax  of  -1"), 
then  T  — i/^A/c.- -  =o.  The  existence  of  the  Spectroscupio 

binaries,  and  the  fact  that  they  follow  Kepler's  Law  is 

therefore  a  proof  thai  c  is  not  ad'octed  by  the  motion  of 
the  source. 

In  a  later  memoir,  replying  t  ̂   the  criticisms  of 

Freun'llich  and  (liinthiek  that  an  apparent  ecoontripity 

occurs  in  the  motion  proportional  to  /'"A,;*,  ",i  being  the 
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maximum  value  of  t> ,  the  velocity  of  light  emitted  being 

7/,,=c  +  X"«,         /t  =  0  Lorentz- Einstein 
/•=!    Ritz. 

Prof,  de  Sitter  admits  the  validity  of  the  criticisms.  But 

he  remarks  that  an  upper  value  of  k  may  be  calculated  from 

the  observations  of  the  double  sar  /3-Aurigae.  For  this  star. 

The  parallax  7r  =  'OU",  e  =  '005,  wn  =  110  /f-w/sec  T  =  3'96, 

A  >  05  light-years, 

/•  is        <    -OOe. 

F«ji  an  experimental  proof,  see  a  paper  by  C.  Majorana. 

Phil.  Mag.,  Vol.  35,  p.  1C,:}. 
[M.  N.  S.] 

Note   10.     Urtl-tlcnuili,  <>f  Muctricity. 

It'  />  is  the  volume  density  in  a  moving  system  then 

p  \/([  —  n'-}  is  the  corresponding  quantity  in  the  correspond 
ing  volume  in  the  fixed  system,  that  is,  in  the  system  at 

rest,  and  hence  it  is  termed  the  rest -density  of  electricity. 

[P.  a  li.] 
Note  11  (page  17). 

SpaM-limc  Ir <}/•<> r^  of  lk»:  //>*/  uml  I /»'  .svv.W  khnl, 

As  we  had  already  occasion  to  mention,  Sommerfeld 

hag,  in  two  papers  on  four  dimensional  geometry  ('vWr, 

Annalen  der  Physik,  Bd.  «2,  p.  Tli)  ;  and  Hd.  :i:1,,  p.  640), 
translated  the  ideas  of  Minkowski  into  the  language  of  four 

dimensional  geometry.  Instead  of  M inkowski's  space-time 
vector  of  the  first  kind,  he  uses  the  more  expressive  term 

'four-vector,'  thereby  making  it  quite  clear  that  it 
represents  a  directed  quantity  like  a  straight  line,  a  force 

or  a  momentum,  and  has  got  4  components,  three  in  the 

direction  of  space-axes,  and  one  in  the  direction  of  the 
time-axis. 
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The  representation  of  the  plane  (defined  by  two  straight 

lines)  is  much  more  difficult.  In  three  dimensions,  the 

plane  can  he  represented  by  the  vector  perpendicular  to 
itself.  Hut  that  artifice  is  not  available  in  four  dimensions. 

For  the  perpendicular  to  a  plane,  we  now  have  not  a  single 

line,  but  an  infinite  number  of  lines  constituting  a  plane. 

This  difficulty  has  been  overcome  by  Minkowski  in  a  very 
elegant  manner  which  will  become  clear  later  on. 

Meanwhile  we  offer  the  following  extract  from  the 
above  mentioned  work  of  Sommerfeld. 

(Pp.  755,  Hd.  Z-2,  Ann.  d.  Pliysik.) 

"  In  order  to  have  a  better  knowledge  about  the  nature 

of  the  six-vector  (which  is  the  same  thing  HS  Minkowski's 
space-time  vector  of  the  2n<l  kind)  let  us  take  the  special 

case  of  a  piece  of  piano,  having  unit  area  (contents),  and 

the  form  of  a  parallelogram,  bounded  by  the  four-vectors 

//,  »',  passing  through  the  origin.  Then  the  projection  of 
this  piece  of  plane  on  the  .r//  plane  is  given  hv  the 

projections  w,,  //„,  /•,,  r  a  of  the  four  vectors  in  the 
combination 

Let  us  form  in  a  similar  manner  all  the  six  component  of 

this  plane  <£.  Then  six  component*  are  not  all  independent 
but  are  connected  1>\  the  following  relation 

Further  the  contents  )  <£  |  of  the  piece  of  a  plane  is  to 

be  defined  as  the  square  rout  of  the  sum  of  the  squares  of 

these  six  ipiantitio.  In  fact, 

i  4|  •  =*«,  +#,+#,+«««+#.  +<*>*.- 
Let  us  now  on  the  other  hand  take  the  ea-^e  of  the  unit 

plane  <j>*  normal  to  $  ;  we  can  call  this  plane  the 
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Complement  of  <f>.     Then  we  have  the   following    relations 

between  the  components  of  the  two  plane  :  — 

The  proof  of  these  assertions  is  as  follows.  Let  ;/*,  r* 
be  the  four  vectors  defining  <£*.  Then  we  have  the 

following  relations  :  — 

multiplying   these   equations  by   r*  .  ;/*-,or  by  r*  .  ?/*  . 
we  obtain 

<i>*:  .$,1   +  **,  £,,=0  and  <£*y  ̂ ,,   +^?.  ̂ ..,=0 
from  which  we  have 

In  a  corresponding  way  we  have 

whon    the   subscript    (//•)    denotes   the  component  of  </>  in 

the  plane  contained  by  the  lines  other  than  (;'£).    Therefore 
the  theorem  is  proved. 

We  have  ^^*=^,  <•+.., 

r*     r,+v*    ?•„+?'*    r.+rfr,=0 

If  we  multiply  these  equations  by  v,,  n,,  rt,  and 
subtract  the  second  from  the  first,  the  fourth  from  the 
third  we  obtain 
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The  ̂ eneral  si i\- vector  /'  is    composed    from  the  vectors 
*"  in  the  following  way  : — 

p  and  p*   denoting    the    contents  of  the  pieces  of  mutually 

perpend  ic « ihir     planes     composing     /'.       The     "conjugate 

Vector"'  f*  (or  it  may  be  called  the  comi)lement    of  /*)   is 
obtained  by  interchanging    p  and  //* 

We  have, 

f*  =  ,,*  4,  +  ,,  $* 

We  can  verify  that 

/*,    =  /.i  etc. 

|  /  |  -  and  (J'f*}  may  be  said  to  bo  invariants  of  the  six 
vectors,  for  their  values  are  independent  of  the  choice  of 
the  system  of  co-ordinates. 

[M.  N.  8.] 

Note  12.      Ligkt-tcfocity  H*  ti  maximum. 

Page    -2-J,    and    Electro-dynamics    of   Moving    Bodies, 

p.  17. 

Flitting  r  =  c  —  .»•,  and  /r  =  c  —  A,  \ve  get 

1  +  (f-.r)  (r-A)/c-'      c-  -(-r-'-(.r-fA)^-f  ,  I 

=  ,         ̂ -(.r  +  A) 2<-  -(.<•  +  A)+J-A/c 

Thus  f<r,  so  lorig  as    |  .rA  |   >(). 

Thus  the  velocity  of  light  is  the  absolute  maximum 

velocity.  We  sh.il!  i:n\v  see  the  consequences  of  admitting 

a  velocity  W  >r. 

Let  A  and  B  be  separated  by  distance  /,  and  let 

velocity  of  a  -Signal  "  in  the  system  S  be  W>r.  Let  the 



178  PRINCIPLE    OF    11ELATIVITY 

(observing)  system  S'  have  velocity  -H1  with  respect  to 
the  system  S. 

Then  velocity  of  signal  with  respect  to  system  S'  is 

Kivenbv  1T« '!*£*., 

Thus  "  time  "  from  A  to  B  as   measured  in  S',  i3  given 

^  nw-'zggD  -,•        ...   •;_; ;•.':.:  0) 
Now  if  r  is  less  than  e,  then  W  being  greater  than  c 

(by  hypothesis)  W  is  greater  than  v,  i.e.,  W>v. 

Let  W=?  +  /A  and  v  =  c  —  A. 

Then  Wr  =  (c  {-  n)(c  —  A)  =  c-  +  (/*  +  X)c  — /zA. 

Now  we  can  always  choose  v  in  such  a  way  that  Wv  is 

greater  than  c-,  since  Wr  is  >c-  if  (/*  +  A)c  —  yuA  is  >0. 

that  is,  if  fji  +  \>—  .which  can  always  be  satisfied  by 
a  suitable  choice  of  A. 

Thus  for  W><?  we  can  always  choose  A  in  such  a 

way  as  to  make  W?->e2,  i.e.,  I—  Wr/c2  negative.  But 

\V  — /•  i>;  always  positive.  Hence  with  W>c,  we  can 

always  make  f' ,  the  time  from  A  lo  B  in  equation  (1) 
"  negative."  That  is,  the  signal  starting  from  A  will  reach 

B  (as  observed  in  system  S')  in  less  than  no  time.  Thus  the 
effect  will  be  perceived  before  the  cause  commences  to  act, 

i.e.,  the  future  will  precede  the  past.  Which  is  absurd. 

Hence  we  conclude  that  W>c  is  an  impossibility,  there 

can  be  no  velocity  greater  than  that  of  light. 

It  is  conceptually  possible  to  imagine  velocities  greater 

than  that  of  light,  but  such  velocities  cannot  occur  in 

reality.  Velocities  greater  than  c,  will  uot  produce 

any  effect.  Causal  effect  of  any  physical  type  can  never 
travel  with  a  velocity  greater  than  that  of  light. 

[P.  C.  M.] 
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Notes  13  and  14. 

We  have  denoted  the  four-vector  t»  by  the  matrix 

I  wi  <02  W3  w»  I  •  It-  is  then  at  once  seen  that  &>  denotes 
the  reciprocal  matrix 

'•  ! 
>4 

It   is  now  evident  that  while  <•>'  =w\,  w»  =  A~'w 

[<»..»]  The  vector-product  of  the  four-vector  w  and  -t 

may  be  represented  by  the  combination 

[w»]     =    w»  —  Sta 

It  is  now  easy  to  verify  the  formula  ./'!  =  A  M/A. 
Supposing  for  the  sake  of  simplicity  that  /  represents  the 

vector-product  of  two  four-vectors  a>,  <v,  we  have 

=  [  A~  a  w,sA  —  A  "  '  *w 

=  A-1[(^-,va>JA  =  A 

Now  remembering  that  generally 

Where  p,  p*  are  scalar  (|iiantities,  <^,  <£*  are  two 
mutually  perpendicular  unit  planes,  there  is  no  difficulty 

in  seeming  that 

/•  =  A-VA. 
Note  15.      The  rector  product  (trf).     (L\  3(>). 

This  represents  the  vector  product  of  ;»    four-  vector  and 
a  six-vector.     Now  as  combinations    of    this    type   are    of 
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frequent  occurrence  in  this  paper,  it  will  be  better  to  form 

an  idea  of  their  geometrical  meaning.  The  following 

is  taken  from  the  above  mentioned  paper  of  Sommerfeld. 

"  We  can  also  form  a  vectorial  combination  of  a  four- 

vector  and  a  six-vector,  giving  us  a  vector  of  the  third 

type.  If  the  six-vector  be  of  a  special  type,  i.e.,  a  piece 
of  plane,  then  this  vector  of  the  third  type  denotes  the 

parallelepiped  formed  of  this  four-vector  and  the  comple 
ment  of  this  piece  of  plane.  In  the  general  case,  the 

product  will  be  the  geometric  sum  of  two  parallelepipeds, 

but  it  can  always  bo  represented  by  a  four-vector  of  the 

1st  type.  For  two  pieces  of  3-space  volumes  can  always 
be  added  together  by  the  vectorial  addition  of  their  com 

ponents.  So  by  the  addition  of  two  3-space  volumes, 
we  do  not  obtain  a  vector  of  a  more  general  type,  but 

one  which  can  always  be  represented  by  a  four-vector 

(loc,  cit.  p.  75!)).  The  state  of  affairs  here  is  Hie  same  as 

in  the  ordinary  vector  calculus,  where  by  the  veetor- 

mu Implication  of  a  vector  of  the  first,  and  a  vector  of  the 

second  type  (/.''.,  a  polar  vector),  we  obtain  a  vector  of  the 

first  tvpe  (axial  vector).  Tl;c  I'unnal  scheme  of  this 
multiplication  is  taken  from  the  three-dimensional  ease. 

Let  A=(A,.  A,,,  A.)  denote  a  vector  of  the  first 

type,  B  =  (B,, . ,  B  -.,,  B.,  ,)  denote  a  vector  of  the  second 

type.  From  this  lust,  let  us  form  three  special  vectors  of 

the  first  kind,  namely— - 

B,=(Brr,  .B,,,  B,sn 

B,  =  (B,.,  B,,,  By.V-(Bl4  =  -Btl.  B,,=0). 
B..  =(B,,,  1} .„,  B..)J 

Since  H ,  ,  is    zero,    B,  is   perpendicular    to  the   /-axis. 

The  /-component    of    the   vector-product    of  A    and  B  is 

equivalent  to  the  scalar  product  of  A  and  U,,  i.e., 

^A,  B,,+A    B,,  +A.    B,,. 
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We  see  easily    that    this    coincides    with  the  usual  rule 

for  the  vector-product,  c.  y.,  fory  =  .'•. 

=  A,  B,,-A..  B..,, 

Correspondingly  let  us  define  in  the  four-dimciibional 

case  the  product  (P/)  of  any  four-  vector  P  and  the  six- 

vector./".  The  /-component  (j  =  -r,  //,  :,  or  /)  is  given  by 

(P/,  )  =  p,/v  ,  +  ?,/,  ,  +  p,,/,  ,  +  p./;,  , 

Eac-h  one  of  these  components  is  obtained  as  the  scalar 
product  of  P,  and  the  vector  f  ,  which  is  perpendicular  to 

j-axis,  and  is  obtained  from  /'  bv  the  ruley',  =  [(f}1,  J  ,v> 

We  can  also  find  out  here  the  geometrical  significance 

of  vectors  of  the  third  type,  when  ,/'=<£,  /.<?.,./'  represents 
only  one  plane. 

We  replace  </>  by  the  parallelogram  defined  by  the  two 

four-vectors  U,  V,  and  let  us  pass  over  to  the  conjugate 

plane  </>*,  which  is  formed  by  the  perpendicular  four-vectors 

U*,  V.*  Tiie  components  of  (P</>)  are  then  eijual  to  the 
1  three-rowed  under-determiuants  1),  Dv  D;  Di  of  the 
matrix 

P,          P.          P.          P/ 

U,*      U,*      U,*      I 

\  Vv*      V:*      \  ,* 

Leavin     aside  the  tirst  column  we  obtain 

which  coincides  with  (P'M  according  to  our  di-linition. 
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Examples  of  this  type  of  vectors  will  be  found  ou 

page  36,  *  =  /t-F,  the  electrical-rest-force,  and  ̂   =  i>o/,* 
ibe  magnetic-  rest-force.  The  rest-ray  I)  =  ?o>  [<I>i/T]  *  also 

belong  to  the  same  type  (page  89).  It  is  easy  to  show 
that 

When  (wn  w2,  o),)=o, 
dimensional  vector 

=/.    il    reduces  to   the  thi-ee- 

Since  in  this  case,  *!=oj4  F14  =«r,  (the  electric  force) 

^l  =  —  i<1}J\^r=mJ,  (the  magnetic  force) 

we  have  (Q)  = 

e, 

m, 

,    analogous   to  the 

Poynting-vector. 

[M.  N.  S.] 

Note  16.     27*e  eleclric-rcd  force.     (Page  37.) 

The  four-  rector  ̂ >  =  o-F  which  is  called  b\r  Minkowaki 

the  clectric-rest-force  (elektrische  Rub-Kraft)  is  very 

closely  connected  to  Lorentz'a  Ponderomotive  force,  or 
the  force  acting  on  a  moving  charge.  If  i>  i?  the  density 

of  charge,  we  have,  when  e=l,  //.=  ],  /'.<".,  for  free  space 

Nn\v  since       p(,=: 

\Vu    have 

l  —  V2  V2 

o*4=p[d.+  j   («•*•'.-••*•)] 
J>.  —  ̂   c  liavc  j)ul    the    c X.J>. — \\\'  have  j)ut    the    component-    of    e    equivalent 

to    ('/,,  dy,  </:),    and    the    components    of    in  equivalent  to 
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//  ,    //  a    //.),    in    accordance    with      the    notation     used     in 

Lorent/'s  Theory  of  Electrons, 
\Ye  have  therefore 

i.  /•.,  /j(,  (<£,,  </>„,  </>.,  )  represents  the  force  acting  on  the 
electron.  Compare  Lorent/,  Theory  of  Electrons,  page  14. 

The  fourth  component  <£,  when  multiplied  by  /j() 

represents  /-times  the  rate  at  which  work  is  done  by 

the  moving  electron,  for  />,,  <£4  .=i'p  [>',<!*  +  ?v7»  +  r.c?.]  = 
r»  Pn</>i+ry  Po^2  +  r.-  Po^s-  —  -%/_l  times  the  power  pos 
sessed  by  the  electron  therefore  represents  the  fourth 

component,  or  the  time  component,  of  the  force-four- 

vector.  This  component  was  first  introduced  by  Poineare 
in  1900. 

The   four-vector    ^  =  /wK*     has  a   similar    relation    to 
the  force  acting  on  a  moving  magnetic  pole. 

Note  17.      Operator  "  Lor"  (§  1:2,  p.   11). 
—  £\  £\  p\ 

The  operation      ̂ -     -5—,     Q  ~,     g  (,     j  which    plays  in 
four-dimensional     mechanics   a    role   similar   to    that     of 

/      o  cs  o  \ 

the   operator  I  /  fC-,  +  j  o    >+  ̂'  "aT=  V  )  m  three-dimen 

sional  geometry  has  been  called  by  ̂ TinUowski  '  Lorent  /- 

Operation  '  or  shortly  '  lor  '  in  honour  of  H.  A.  Lorent/, 
the  discoverer  of  the  theorem  of  relativity.  Later  writers 

have  sometimes  used  the  symbol  Q  to  denote  this 

operation.  In  the  above-mentioned  paper  (Annalen  der 

Physik,  p.  (ill),  Bd.  33)  Sommerfeld  has  introduced  the 

terms,  Div  (divergence),  Hot  (  Rotation),  (I  rad  (gradient) 

as  four-dimensional  extensions  of  the  corresponding  three- 

dimensional  operations  in  place  of  the  general  svmho! 

lor.  The  ph\'sical  si^ni'ii-iiu-e  of  thes-  operations  will 
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become  clear  when  along  with  Minkowski's  met  hod  of 
treatment  we  also  study  the  geometrical  method  of 

Sommerfeld.  Minkowski  begins  here  with  the  case  of 

lor  S,  where  8  is  a  six- vector  (^pace-time  vector  of  the 
2nd  kind). 

This    being   a   complicated  case,   we  take    the  simpler 

catffe  of  lor  *, 

where  A-  is  a  four- vector  =  j  -fj,  *„,  A-O  *4  | 

and  .s  =  i     *, 

The  following  geometrical  method  is  taken  from  Som- 
m erf eld. 

Scalar  Divergence — Let  A  2  denote  a  small  four-dimen 
sional  volume  of  any  shape  in  the  neighbourhood  of  the 

space-time  point  Q,  //S  denote  the  three-dimensional 
bounding  surface  of  A2,  /'  be  the  outer  normal  to  ifS. 

Let  S  be  anv  four-vector,  PN  its  normal  component. 
Then 

Div  S  =  Lim 

Now  if  for  A 2  we  choose  the  four-dimensional  paral 

lelepiped  with  sides  (//>-,,  //.>•„,  ̂ .rn,  (?.r4}}  we  have  then 

O    ''  i  O       2  C/  •'  3  O   •''  i 

If  f  denotes  a  space-time  vector  of  the  second  kind,  lor 

/'is  equivalent  to  a  space-time  vector  of  the  first  kind.  The 
geometrical  significance  can  be  thus  brought  out.  We  have 

seen  fiat  the  operator  '  lor'  beirives  in  every  respect  like 
a  four-vector.  The  vector-product  of  a  four-vector  and  a 
six-vector  is  again  a  four-vector.  Therefore  it  is  easy 
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tn  see  that  lor  S  will  lie  a  four-vector.  Let  us  find 

thr  component  of  tliis  f  on  r-  vector  in  any  direction  *. 

l.i't  S  denote  the  three-space  whieh  passes  through  the 

point  Q  (./•,,  .r,,  .r.,,  .r4)  and  is  perpendicular  to  ,v,  AS  a 

very  small  part  of  it  in  the  region  of  Q,  tfn-  is  an  element 
of  its  two-dimensional  surface.  Let  the  perpendicular 

to  this  surface  lying  in  the  space  be  denoted  by  //,  and 

let  /'.„  denote  the  component  of  f  in  the  plane  of  (*//) 
which  is  evidently  conjugate  to  the  plane  tlv.  Then  the 

v-component  of  tho  vector  divergence  of  /'  because  the 

operator  lor  multiplies  /'  vectorially) 

=  Divf.=Lim    Ih^?. 

A*=0    AS 
Where  the  integration  in  </<r  is  to  be  extended  over 

the  whole  surface. 

If  now  x  is  selected  as  the  .r-direction,  A*  is  then 

a  three-dimensional  parallelopiped  with  the  sides  t1i/}  <h, 
i//,  then  we  have 

and  generallv 

'  =      '  +       +-     + 

H.-nce  the  four-components  of  the  four-  vector  lor  S 

or  Div.  /'  is  a  four-vector  with  the  components  given  on 

pag.-  1-2. 
According  to  the  formulae  of  space  geometry,  D, 

denote-;  a  parallelopiped  laid  in  the  (//->0  space,  formed 

out  of  the  vectors  (P,  P.  ?,),  (IT*  r*  U*)    (v*    vt  V*,). 
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D,  is  therefore  the  projection  on  the  y-:-l  space  of 

1he  peralielopiped  formed  out  of  these  three  four- vectors 

(P,  U*,  V*),  and  could  as  well  be  denoted  by  Dyxl. 
We  see  directly  that  the  four-vector  of  the  kind  represent 

ed  by  (D,,  Dy,  D.,  D,)  is  perpendicular  to  the  parallele 

piped  formed  by  (P  U*  V*). 

Generally  we  have 

(P/)=PD  +  P*D*. 

.•.  The  vector  of  the  third  type  represented  by  (P/) 

is  given  by  the  geometrical  sum  of  the  two  four-vectors  of 

the  first  type  PD  and  P*D*. 
[M.  N.  S.] 
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